These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 34860502)

  • 1. In Situ Probing Liquid/Liquid Interfacial Kinetics through Single Nanodroplet Electrochemistry.
    Moon H; Park JH
    Anal Chem; 2021 Dec; 93(50):16915-16921. PubMed ID: 34860502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical Analysis of Attoliter Water Droplets in Organic Solutions through Partitioning Equilibrium.
    Moon H; Park JH
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing Ion Transfer across Liquid-Liquid Interfaces by Monitoring Collisions of Single Femtoliter Oil Droplets on Ultramicroelectrodes.
    Deng H; Dick JE; Kummer S; Kragl U; Strauss SH; Bard AJ
    Anal Chem; 2016 Aug; 88(15):7754-61. PubMed ID: 27387789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfacial kinetics in a model emulsion polymerisation system using microelectrochemical measurements at expanding droplets (MEMED) and time lapse microscopy.
    Oseland EE; Rea A; de Heer MI; Fowler JD; Unwin PR
    J Colloid Interface Sci; 2017 Mar; 490():703-709. PubMed ID: 27978455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A study on liquid-liquid distribution based on single picoliter droplets and in situ electrochemical measurements.
    Nakatani K; Sudo M; Kitamura N
    Anal Chem; 2000 Jan; 72(2):339-42. PubMed ID: 10658328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemistry of a single attoliter emulsion droplet in collisions.
    Kim BK; Kim J; Bard AJ
    J Am Chem Soc; 2015 Feb; 137(6):2343-9. PubMed ID: 25616104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of anion transfer across the liquid | liquid interface of a thin organic film modified electrode, studied by means of square-wave voltammetry.
    Quentel F; Mirceski V; L'Her M
    Anal Chem; 2005 Apr; 77(7):1940-9. PubMed ID: 15801722
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Park H; Park JH
    J Phys Chem Lett; 2020 Dec; 11(23):10250-10255. PubMed ID: 33210920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclic voltammetry at micropipet electrodes for the study of ion-transfer kinetics at liquid/liquid interfaces.
    Rodgers PJ; Amemiya S
    Anal Chem; 2007 Dec; 79(24):9276-85. PubMed ID: 18004818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroxybenzoyl-CoA reductase: coupling kinetics and electrochemistry to derive enzyme mechanisms.
    el Kasmi A; Brachmann R; Fuchs G; Ragsdale SW
    Biochemistry; 1995 Sep; 34(37):11668-77. PubMed ID: 7547899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simultaneous study of kinetics and thermodynamics of anion transfer across the liquid/liquid interface by means of Fourier transformed large-amplitude square-wave voltammetry at three-phase electrode.
    Deng H; Huang X; Wang L
    Langmuir; 2010 Dec; 26(24):19209-16. PubMed ID: 21082797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical quantification of accelerated FADGDH rates in aqueous nanodroplets.
    Vannoy KJ; Lee I; Sode K; Dick JE
    Proc Natl Acad Sci U S A; 2021 Jun; 118(25):. PubMed ID: 34161273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical ion transfer across liquid/liquid interfaces confined within solid-state micropore arrays--simulations and experiments.
    Strutwolf J; Scanlon MD; Arrigan DW
    Analyst; 2009 Jan; 134(1):148-58. PubMed ID: 19082187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential-Modulated Ion Distributions in the Back-to-Back Electrical Double Layers at a Polarised Liquid|Liquid Interface Regulate the Kinetics of Interfacial Electron Transfer.
    Gamero-Quijano A; Manzanares JA; Ghazvini SMBH; Low PJ; Scanlon MD
    ChemElectroChem; 2023 Feb; 10(3):e202201042. PubMed ID: 37082100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing emulsions by observation of single droplet collisions--attoliter electrochemical reactors.
    Kim BK; Boika A; Kim J; Dick JE; Bard AJ
    J Am Chem Soc; 2014 Apr; 136(13):4849-52. PubMed ID: 24641496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemistry of coupled electron-ion transfer of a heme-like complex in an artificial organic membrane.
    Mirceski V; Dzimbova T; Sefer B; Krakutovski G
    Bioelectrochemistry; 2010 Jun; 78(2):147-54. PubMed ID: 19833562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical Investigations of Hydrogenases and Other Enzymes That Produce and Use Solar Fuels.
    Del Barrio M; Sensi M; Orain C; Baffert C; Dementin S; Fourmond V; Léger C
    Acc Chem Res; 2018 Mar; 51(3):769-777. PubMed ID: 29517230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ solid-state electrochemistry of mass-selected ions at well-defined electrode-electrolyte interfaces.
    Prabhakaran V; Johnson GE; Wang B; Laskin J
    Proc Natl Acad Sci U S A; 2016 Nov; 113(47):13324-13329. PubMed ID: 27821731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanodroplet Depinning from Nanoparticles.
    Liu Q; Leong FY; Aabdin Z; Anand U; Si Bui Quang T; Mirsaidov U
    ACS Nano; 2015 Sep; 9(9):9020-6. PubMed ID: 26286165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversible electrochemistry of fumarate reductase immobilized on an electrode surface. Direct voltammetric observations of redox centers and their participation in rapid catalytic electron transport.
    Sucheta A; Cammack R; Weiner J; Armstrong FA
    Biochemistry; 1993 May; 32(20):5455-65. PubMed ID: 8499449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.