BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34860656)

  • 1. Predicting miRNA-Disease Associations Through Deep Autoencoder With Multiple Kernel Learning.
    Zhou F; Yin MM; Jiao CN; Zhao JX; Zheng CH; Liu JX
    IEEE Trans Neural Netw Learn Syst; 2023 Sep; 34(9):5570-5579. PubMed ID: 34860656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-Kernel Graph Attention Deep Autoencoder for MiRNA-Disease Association Prediction.
    Jiao CN; Zhou F; Liu BM; Zheng CH; Liu JX; Gao YL
    IEEE J Biomed Health Inform; 2024 Feb; 28(2):1110-1121. PubMed ID: 38055359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNRLCNN: A CNN Framework for Identifying MiRNA-Disease Associations Using Latent Feature Matrix Extraction with Positive Samples.
    Zhong J; Zhou W; Kang J; Fang Z; Xie M; Xiao Q; Peng W
    Interdiscip Sci; 2022 Jun; 14(2):607-622. PubMed ID: 35428965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Method Based On Dual-Network Information Fusion to Predict MiRNA-Disease Associations.
    Zhou F; Yin MM; Zhao JX; Shang J; Liu JX
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):52-60. PubMed ID: 34882558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive deep propagation graph neural network for predicting miRNA-disease associations.
    Hu H; Zhao H; Zhong T; Dong X; Wang L; Han P; Li Z
    Brief Funct Genomics; 2023 Nov; 22(5):453-462. PubMed ID: 37078739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of miRNA-disease associations via deep forest ensemble learning based on autoencoder.
    Liu W; Lin H; Huang L; Peng L; Tang T; Zhao Q; Yang L
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35325038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inferring the Disease-Associated miRNAs Based on Network Representation Learning and Convolutional Neural Networks.
    Xuan P; Sun H; Wang X; Zhang T; Pan S
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31349729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of miRNA-Disease Associations by Cascade Forest Model Based on Stacked Autoencoder.
    Hu X; Yin Z; Zeng Z; Peng Y
    Molecules; 2023 Jun; 28(13):. PubMed ID: 37446675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting potential microbe-disease associations with graph attention autoencoder, positive-unlabeled learning, and deep neural network.
    Peng L; Huang L; Tian G; Wu Y; Li G; Cao J; Wang P; Li Z; Duan L
    Front Microbiol; 2023; 14():1244527. PubMed ID: 37789848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting miRNA-disease associations based on PPMI and attention network.
    Xie X; Wang Y; He K; Sheng N
    BMC Bioinformatics; 2023 Mar; 24(1):113. PubMed ID: 36959547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting miRNA-disease associations based on lncRNA-miRNA interactions and graph convolution networks.
    Wang W; Chen H
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36526276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DAESTB: inferring associations of small molecule-miRNA via a scalable tree boosting model based on deep autoencoder.
    Peng L; Tu Y; Huang L; Li Y; Fu X; Chen X
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36377749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SFGAE: a self-feature-based graph autoencoder model for miRNA-disease associations prediction.
    Ma M; Na S; Zhang X; Chen C; Xu J
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36037084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MDA-GCNFTG: identifying miRNA-disease associations based on graph convolutional networks via graph sampling through the feature and topology graph.
    Chu Y; Wang X; Dai Q; Wang Y; Wang Q; Peng S; Wei X; Qiu J; Salahub DR; Xiong Y; Wei DQ
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34009265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SGAEMDA: Predicting miRNA-Disease Associations Based on Stacked Graph Autoencoder.
    Wang S; Lin B; Zhang Y; Qiao S; Wang F; Wu W; Ren C
    Cells; 2022 Dec; 11(24):. PubMed ID: 36552748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An improved random forest-based computational model for predicting novel miRNA-disease associations.
    Yao D; Zhan X; Kwoh CK
    BMC Bioinformatics; 2019 Dec; 20(1):624. PubMed ID: 31795954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MSCNE:Predict miRNA-Disease Associations Using Neural Network Based on Multi-Source Biological Information.
    Han G; Kuang Z; Deng L
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(5):2926-2937. PubMed ID: 34410928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MiRNA-disease interaction prediction based on kernel neighborhood similarity and multi-network bidirectional propagation.
    Ma Y; He T; Ge L; Zhang C; Jiang X
    BMC Med Genomics; 2019 Dec; 12(Suppl 10):185. PubMed ID: 31865912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting miRNA-disease associations via learning multimodal networks and fusing mixed neighborhood information.
    Lou Z; Cheng Z; Li H; Teng Z; Liu Y; Tian Z
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35524503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A structural deep network embedding model for predicting associations between miRNA and disease based on molecular association network.
    Li HY; Chen HY; Wang L; Song SJ; You ZH; Yan X; Yu JQ
    Sci Rep; 2021 Jun; 11(1):12640. PubMed ID: 34135401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.