These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 34860656)
1. Predicting miRNA-Disease Associations Through Deep Autoencoder With Multiple Kernel Learning. Zhou F; Yin MM; Jiao CN; Zhao JX; Zheng CH; Liu JX IEEE Trans Neural Netw Learn Syst; 2023 Sep; 34(9):5570-5579. PubMed ID: 34860656 [TBL] [Abstract][Full Text] [Related]
2. Multi-Kernel Graph Attention Deep Autoencoder for MiRNA-Disease Association Prediction. Jiao CN; Zhou F; Liu BM; Zheng CH; Liu JX; Gao YL IEEE J Biomed Health Inform; 2024 Feb; 28(2):1110-1121. PubMed ID: 38055359 [TBL] [Abstract][Full Text] [Related]
3. DAE-CFR: detecting microRNA-disease associations using deep autoencoder and combined feature representation. Liu Y; Zhang R; Dong X; Yang H; Li J; Cao H; Tian J; Zhang Y BMC Bioinformatics; 2024 Mar; 25(1):139. PubMed ID: 38553698 [TBL] [Abstract][Full Text] [Related]
4. DNRLCNN: A CNN Framework for Identifying MiRNA-Disease Associations Using Latent Feature Matrix Extraction with Positive Samples. Zhong J; Zhou W; Kang J; Fang Z; Xie M; Xiao Q; Peng W Interdiscip Sci; 2022 Jun; 14(2):607-622. PubMed ID: 35428965 [TBL] [Abstract][Full Text] [Related]
5. A Method Based On Dual-Network Information Fusion to Predict MiRNA-Disease Associations. Zhou F; Yin MM; Zhao JX; Shang J; Liu JX IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):52-60. PubMed ID: 34882558 [TBL] [Abstract][Full Text] [Related]
6. Adaptive deep propagation graph neural network for predicting miRNA-disease associations. Hu H; Zhao H; Zhong T; Dong X; Wang L; Han P; Li Z Brief Funct Genomics; 2023 Nov; 22(5):453-462. PubMed ID: 37078739 [TBL] [Abstract][Full Text] [Related]
7. Identification of miRNA-disease associations via deep forest ensemble learning based on autoencoder. Liu W; Lin H; Huang L; Peng L; Tang T; Zhao Q; Yang L Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35325038 [TBL] [Abstract][Full Text] [Related]
8. Synchronous Mutual Learning Network and Asynchronous Multi-Scale Embedding Network for miRNA-Disease Association Prediction. Sun W; Zhang P; Zhang W; Xu J; Huang Y; Li L Interdiscip Sci; 2024 Sep; 16(3):532-553. PubMed ID: 38310628 [TBL] [Abstract][Full Text] [Related]
9. Inferring the Disease-Associated miRNAs Based on Network Representation Learning and Convolutional Neural Networks. Xuan P; Sun H; Wang X; Zhang T; Pan S Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31349729 [TBL] [Abstract][Full Text] [Related]
10. Prediction of miRNA-Disease Associations by Cascade Forest Model Based on Stacked Autoencoder. Hu X; Yin Z; Zeng Z; Peng Y Molecules; 2023 Jun; 28(13):. PubMed ID: 37446675 [TBL] [Abstract][Full Text] [Related]
11. Predicting potential microbe-disease associations with graph attention autoencoder, positive-unlabeled learning, and deep neural network. Peng L; Huang L; Tian G; Wu Y; Li G; Cao J; Wang P; Li Z; Duan L Front Microbiol; 2023; 14():1244527. PubMed ID: 37789848 [TBL] [Abstract][Full Text] [Related]
12. Predicting miRNA-disease associations based on PPMI and attention network. Xie X; Wang Y; He K; Sheng N BMC Bioinformatics; 2023 Mar; 24(1):113. PubMed ID: 36959547 [TBL] [Abstract][Full Text] [Related]
13. Predicting miRNA-disease associations based on lncRNA-miRNA interactions and graph convolution networks. Wang W; Chen H Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36526276 [TBL] [Abstract][Full Text] [Related]
14. DAESTB: inferring associations of small molecule-miRNA via a scalable tree boosting model based on deep autoencoder. Peng L; Tu Y; Huang L; Li Y; Fu X; Chen X Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36377749 [TBL] [Abstract][Full Text] [Related]
15. SFGAE: a self-feature-based graph autoencoder model for miRNA-disease associations prediction. Ma M; Na S; Zhang X; Chen C; Xu J Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36037084 [TBL] [Abstract][Full Text] [Related]
16. MDA-GCNFTG: identifying miRNA-disease associations based on graph convolutional networks via graph sampling through the feature and topology graph. Chu Y; Wang X; Dai Q; Wang Y; Wang Q; Peng S; Wei X; Qiu J; Salahub DR; Xiong Y; Wei DQ Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34009265 [TBL] [Abstract][Full Text] [Related]
17. SGAEMDA: Predicting miRNA-Disease Associations Based on Stacked Graph Autoencoder. Wang S; Lin B; Zhang Y; Qiao S; Wang F; Wu W; Ren C Cells; 2022 Dec; 11(24):. PubMed ID: 36552748 [TBL] [Abstract][Full Text] [Related]
18. An improved random forest-based computational model for predicting novel miRNA-disease associations. Yao D; Zhan X; Kwoh CK BMC Bioinformatics; 2019 Dec; 20(1):624. PubMed ID: 31795954 [TBL] [Abstract][Full Text] [Related]
19. MSCNE:Predict miRNA-Disease Associations Using Neural Network Based on Multi-Source Biological Information. Han G; Kuang Z; Deng L IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(5):2926-2937. PubMed ID: 34410928 [TBL] [Abstract][Full Text] [Related]
20. MiRNA-disease interaction prediction based on kernel neighborhood similarity and multi-network bidirectional propagation. Ma Y; He T; Ge L; Zhang C; Jiang X BMC Med Genomics; 2019 Dec; 12(Suppl 10):185. PubMed ID: 31865912 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]