These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 34860660)

  • 1. From Chaos to Pseudorandomness: A Case Study on the 2-D Coupled Map Lattice.
    Wang Y; Liu Z; Zhang LY; Pareschi F; Setti G; Chen G
    IEEE Trans Cybern; 2023 Feb; 53(2):1324-1334. PubMed ID: 34860660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robustification of a One-Dimensional Generic Sigmoidal Chaotic Map with Application of True Random Bit Generation.
    Jiteurtragool N; Masayoshi T; San-Um W
    Entropy (Basel); 2018 Feb; 20(2):. PubMed ID: 33265227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Pseudorandom Number Generator Based on the Chaotic Map and Quantum Random Walks.
    Zhao W; Chang Z; Ma C; Shen Z
    Entropy (Basel); 2023 Jan; 25(1):. PubMed ID: 36673308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pseudorandom number generator based on novel 2D Hénon-Sine hyperchaotic map with microcontroller implementation.
    Murillo-Escobar D; Murillo-Escobar MÁ; Cruz-Hernández C; Arellano-Delgado A; López-Gutiérrez RM
    Nonlinear Dyn; 2023; 111(7):6773-6789. PubMed ID: 36465277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of the Logistic Map Using Fuzzy Numbers with Application to Pseudorandom Number Generation and Image Encryption.
    Moysis L; Volos C; Jafari S; Munoz-Pacheco JM; Kengne J; Rajagopal K; Stouboulos I
    Entropy (Basel); 2020 Apr; 22(4):. PubMed ID: 33286248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Analysis of Deterministic Chaos as an Entropy Source for Random Number Generators.
    Demir K; Ergün S
    Entropy (Basel); 2018 Dec; 20(12):. PubMed ID: 33266681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel chaotic system based on coupled map lattice and its application in HEVC encryption.
    Ye Q; Zhang Q; Liu S; Chen K
    Math Biosci Eng; 2021 Oct; 18(6):9410-9429. PubMed ID: 34814352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A cascading method for constructing new discrete chaotic systems with better randomness.
    Yuan F; Deng Y; Li Y; Chen G
    Chaos; 2019 May; 29(5):053120. PubMed ID: 31154765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chaotic operation and chaos control of travelling wave ultrasonic motor.
    Shi J; Zhao F; Shen X; Wang X
    Ultrasonics; 2013 Aug; 53(6):1112-23. PubMed ID: 23490014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Digital key for chaos communication performing time delay concealment.
    Nguimdo RM; Colet P; Larger L; Pesquera L
    Phys Rev Lett; 2011 Jul; 107(3):034103. PubMed ID: 21838363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Hardware Pseudo-Random Number Generator Using Stochastic Computing and Logistic Map.
    Liu J; Liang Z; Luo Y; Cao L; Zhang S; Wang Y; Yang S
    Micromachines (Basel); 2020 Dec; 12(1):. PubMed ID: 33396607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the pseudo-randomness properties of chaotic maps using deep-zoom.
    Machicao J; Bruno OM
    Chaos; 2017 May; 27(5):053116. PubMed ID: 28576110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brownian motion properties of optoelectronic random bit generators based on laser chaos.
    Li P; Yi X; Liu X; Wang Y; Wang Y
    Opt Express; 2016 Jul; 24(14):15822-33. PubMed ID: 27410852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pseudorandom number generation using chaotic true orbits of the Bernoulli map.
    Saito A; Yamaguchi A
    Chaos; 2016 Jun; 26(6):063122. PubMed ID: 27368787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Entropy evaluation of white chaos generated by optical heterodyne for certifying physical random number generators.
    Yoshiya K; Terashima Y; Kanno K; Uchida A
    Opt Express; 2020 Feb; 28(3):3686-3698. PubMed ID: 32122032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Medical Images are Safe - an Enhanced Chaotic Scrambling Approach.
    Mohamed Parvees MY; Abdul Samath J; Parameswaran Bose B
    J Med Syst; 2017 Sep; 41(10):167. PubMed ID: 28900790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Minimal-post-processing 320-Gbps true random bit generation using physical white chaos.
    Wang A; Wang L; Li P; Wang Y
    Opt Express; 2017 Feb; 25(4):3153-3164. PubMed ID: 28241531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of coupled simplest chaotic two-component electronic circuits and its potential application to random bit generation.
    Nguimdo RM; Tchitnga R; Woafo P
    Chaos; 2013 Dec; 23(4):043122. PubMed ID: 24387561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple no-equilibrium chaotic system with only one signum function for generating multidirectional variable hidden attractors and its hardware implementation.
    Zhang S; Wang X; Zeng Z
    Chaos; 2020 May; 30(5):053129. PubMed ID: 32491881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atmospheric pressure air microplasma current time series for true random bit generation.
    Allagui A; Majzoub S; Elwakil AS; Rojas AE; Alawadhi H
    Sci Rep; 2020 Dec; 10(1):20971. PubMed ID: 33262436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.