BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34860842)

  • 1. Investigation of ANN architecture for predicting the compressive strength of concrete containing GGBFS.
    Tran VQ; Mai HT; Nguyen TA; Ly HB
    PLoS One; 2021; 16(12):e0260847. PubMed ID: 34860842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of ANN architecture for predicting shear strength of fiber reinforcement bars concrete beams.
    Nguyen QH; Ly HB; Nguyen TA; Phan VH; Nguyen LK; Tran VQ
    PLoS One; 2021; 16(4):e0247391. PubMed ID: 33798200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic multiscale models to predict the compressive strength of fly ash-based geopolymer concrete at various mixture proportions and curing regimes.
    Ahmed HU; Mohammed AS; Mohammed AA; Faraj RH
    PLoS One; 2021; 16(6):e0253006. PubMed ID: 34125869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial neural network, machine learning modelling of compressive strength of recycled coarse aggregate based self-compacting concrete.
    Jagadesh P; Khan AH; Priya BS; Asheeka A; Zoubir Z; Magbool HM; Alam S; Bakather OY
    PLoS One; 2024; 19(5):e0303101. PubMed ID: 38739642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Nature-Inspired Metaheuristic Method for Predicting the Creep Strain of Green Concrete Containing Ground Granulated Blast Furnace Slag.
    Sadowski Ł; Nikoo M; Shariq M; Joker E; Czarnecki S
    Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30658508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soft computing models to predict the compressive strength of GGBS/FA- geopolymer concrete.
    Ahmed HU; Mohammed AA; Mohammed A
    PLoS One; 2022; 17(5):e0265846. PubMed ID: 35613110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid nonlinear regression model versus MARS, MEP, and ANN to evaluate the effect of the size and content of waste tire rubber on the compressive strength of concrete.
    Ismael Jaf DK; Abdalla A; Mohammed AS; Abdulrahman PI; Rawaz Kurda ; Mohammed AA
    Heliyon; 2024 Feb; 10(4):e25997. PubMed ID: 38384542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recycling ground granulated blast furnace slag as cold bonded artificial aggregate partially used in self-compacting concrete.
    Gesoğlu M; Güneyisi E; Mahmood SF; Öz HÖ; Mermerdaş K
    J Hazard Mater; 2012 Oct; 235-236():352-8. PubMed ID: 22951223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of Strength Development in Concrete with Ground Granulated Blast Furnace Slag Using Apparent Activation Energy.
    Yang HM; Kwon SJ; Myung NV; Singh JK; Lee HS; Mandal S
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31963399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the compressive strength of eco-friendly self-compacting concrete incorporating ground granulated blast furnace slag using soft computing techniques.
    Faraj RH; Mohammed AA; Omer KM
    Environ Sci Pollut Res Int; 2022 Oct; 29(47):71338-71357. PubMed ID: 35596861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slag and Bagasse Ash: Potential Binders for Sustainable Rigid Pavement.
    Boora A; Rani K; Suthar M; Rana R; Berwal P; Al Asmari AFS; Amir Khan M; Islam S
    ACS Omega; 2023 Sep; 8(36):32867-32876. PubMed ID: 37720797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating Compressive Strength of Concrete Using Neural Electromagnetic Field Optimization.
    Akbarzadeh MR; Ghafourian H; Anvari A; Pourhanasa R; Nehdi ML
    Materials (Basel); 2023 Jun; 16(11):. PubMed ID: 37297334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mass GGBFS Concrete Mixed with Recycled Aggregates as Alkali-Active Substances: Workability, Temperature History and Strength.
    Huo Y; Huang J; Han X; Sun H; Liu T; Zhou J; Yang Y
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Various Fly Ash and Ground Granulated Blast Furnace Slag Content on Concrete Properties: Experiments and Modelling.
    Qu Z; Liu Z; Si R; Zhang Y
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on the corrosion resistance of reinforced steel in concrete with ground granulated blast-furnace slag--An overview.
    Song HW; Saraswathy V
    J Hazard Mater; 2006 Nov; 138(2):226-33. PubMed ID: 16930831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learned Prediction of Compressive Strength of GGBFS Concrete Using Hybrid Artificial Neural Network Models.
    Han IJ; Yuan TF; Lee JY; Yoon YS; Kim JH
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31717660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical conductivity, microstructures, chemical compositions, and systematic multivariable models to evaluate the effect of waste slag smelting (pyrometallurgical) on the compressive strength of concrete.
    Piro NS; Mohammed AS; Hamad SM; Kurda R
    Environ Sci Pollut Res Int; 2022 Sep; 29(45):68488-68521. PubMed ID: 35543777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of the Compressive Strength of Waste-Based Concretes Using Artificial Neural Network.
    Amar M; Benzerzour M; Zentar R; Abriak NE
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation on factors affecting early strength of high-performance concrete by Gaussian Process Regression.
    Ly HB; Nguyen TA; Pham BT
    PLoS One; 2022; 17(1):e0262930. PubMed ID: 35085343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compressive strength and resistance to chloride ion penetration and carbonation of recycled aggregate concrete with varying amount of fly ash and fine recycled aggregate.
    Sim J; Park C
    Waste Manag; 2011 Nov; 31(11):2352-60. PubMed ID: 21784626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.