These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 34860847)
61. Performance comparison of publicly available retinal blood vessel segmentation methods. Vostatek P; Claridge E; Uusitalo H; Hauta-Kasari M; Fält P; Lensu L Comput Med Imaging Graph; 2017 Jan; 55():2-12. PubMed ID: 27515743 [TBL] [Abstract][Full Text] [Related]
62. Multi-path cascaded U-net for vessel segmentation from fundus fluorescein angiography sequential images. Sun G; Liu X; Yu X Comput Methods Programs Biomed; 2021 Nov; 211():106422. PubMed ID: 34598080 [TBL] [Abstract][Full Text] [Related]
63. MAG-Net : Multi-fusion network with grouped attention for retinal vessel segmentation. Jiang Y; Chen J; Yan W; Zhang Z; Qiao H; Wang M Math Biosci Eng; 2024 Jan; 21(2):1938-1958. PubMed ID: 38454669 [TBL] [Abstract][Full Text] [Related]
64. MC-UNet: Multimodule Concatenation Based on U-Shape Network for Retinal Blood Vessels Segmentation. Li J; Zhang T; Zhao Y; Chen N; Zhou H; Xu H; Guan Z; Xue L; Yang C; Chen R; Wei L Comput Intell Neurosci; 2022; 2022():9917691. PubMed ID: 36387767 [TBL] [Abstract][Full Text] [Related]
65. Diabetic and Hypertensive Retinopathy Screening in Fundus Images Using Artificially Intelligent Shallow Architectures. Arsalan M; Haider A; Choi J; Park KR J Pers Med; 2021 Dec; 12(1):. PubMed ID: 35055322 [TBL] [Abstract][Full Text] [Related]
66. UNet retinal blood vessel segmentation algorithm based on improved pyramid pooling method and attention mechanism. Du XF; Wang JS; Sun WZ Phys Med Biol; 2021 Aug; 66(17):. PubMed ID: 34375955 [TBL] [Abstract][Full Text] [Related]
67. AMF-NET: Attention-aware Multi-scale Fusion Network for Retinal Vessel Segmentation. Yang Q; Ma B; Cui H; Ma J Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3277-3280. PubMed ID: 34891940 [TBL] [Abstract][Full Text] [Related]
68. CPMF-Net: Multi-Feature Network Based on Collaborative Patches for Retinal Vessel Segmentation. Tang W; Deng H; Yin S Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501911 [TBL] [Abstract][Full Text] [Related]
69. Do you need sharpened details? Asking MMDC-Net: Multi-layer multi-scale dilated convolution network for retinal vessel segmentation. Zhong X; Zhang H; Li G; Ji D Comput Biol Med; 2022 Nov; 150():106198. PubMed ID: 37859292 [TBL] [Abstract][Full Text] [Related]
70. Retina-TransNet: A Gradient-Guided Few-Shot Retinal Vessel Segmentation Net. Shao HC; Chen CY; Chang MH; Yu CH; Lin CW; Yang JW IEEE J Biomed Health Inform; 2023 Oct; 27(10):4902-4913. PubMed ID: 37490372 [TBL] [Abstract][Full Text] [Related]
71. High-precision retinal blood vessel segmentation based on a multi-stage and dual-channel deep learning network. Guo H; Meng J; Zhao Y; Zhang H; Dai C Phys Med Biol; 2024 Feb; 69(4):. PubMed ID: 38198716 [No Abstract] [Full Text] [Related]
72. Artery vein classification in fundus images using serially connected U-Nets. Karlsson RA; Hardarson SH Comput Methods Programs Biomed; 2022 Apr; 216():106650. PubMed ID: 35139461 [TBL] [Abstract][Full Text] [Related]
73. An efficient retinal blood vessel segmentation in eye fundus images by using optimized top-hat and homomorphic filtering. Ramos-Soto O; Rodríguez-Esparza E; Balderas-Mata SE; Oliva D; Hassanien AE; Meleppat RK; Zawadzki RJ Comput Methods Programs Biomed; 2021 Apr; 201():105949. PubMed ID: 33567382 [TBL] [Abstract][Full Text] [Related]
74. Retinal Vessel Segmentation Based on B-COSFIRE Filters in Fundus Images. Li W; Xiao Y; Hu H; Zhu C; Wang H; Liu Z; Sangaiah AK Front Public Health; 2022; 10():914973. PubMed ID: 36159307 [TBL] [Abstract][Full Text] [Related]
75. Assessing fairness in performance evaluation of publicly available retinal blood vessel segmentation algorithms. Dharmawan DA J Med Eng Technol; 2021 Jul; 45(5):351-360. PubMed ID: 33843422 [TBL] [Abstract][Full Text] [Related]
76. Improving sensitivity and connectivity of retinal vessel segmentation via error discrimination network. Lin G; Bai H; Zhao J; Yun Z; Chen Y; Pang S; Feng Q Med Phys; 2022 Jul; 49(7):4494-4507. PubMed ID: 35338781 [TBL] [Abstract][Full Text] [Related]
77. A Detailed Systematic Review on Retinal Image Segmentation Methods. Panda NR; Sahoo AK J Digit Imaging; 2022 Oct; 35(5):1250-1270. PubMed ID: 35508746 [TBL] [Abstract][Full Text] [Related]
78. EAMR-Net: A multiscale effective spatial and cross-channel attention network for retinal vessel segmentation. Prethija G; Katiravan J Math Biosci Eng; 2024 Feb; 21(3):4742-4761. PubMed ID: 38549347 [TBL] [Abstract][Full Text] [Related]
79. Skeleton-guided multi-scale dual-coordinate attention aggregation network for retinal blood vessel segmentation. Zhou W; Wang X; Yang X; Hu Y; Yi Y Comput Biol Med; 2024 Oct; 181():109027. PubMed ID: 39178808 [TBL] [Abstract][Full Text] [Related]
80. Retinal blood vessel segmentation from fundus image using an efficient multiscale directional representation technique Bendlets. Kushol R; Kabir MH; Abdullah-Al-Wadud M; Islam MS Math Biosci Eng; 2020 Nov; 17(6):7751-7771. PubMed ID: 33378918 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]