These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 34861059)
1. MicroRNA-34a in coronary heart disease: Correlation with disease risk, blood lipid, stenosis degree, inflammatory cytokines, and cell adhesion molecules. Li H; Chen M; Feng Q; Zhu L; Bai Z; Wang B; Guo Z; Hou A; Li H J Clin Lab Anal; 2022 Jan; 36(1):e24138. PubMed ID: 34861059 [TBL] [Abstract][Full Text] [Related]
2. LncRNA UCA1, miR-26a, and miR-195 in coronary heart disease patients: Correlation with stenosis degree, cholesterol levels, inflammatory cytokines, and cell adhesion molecules. Li J; Chen Z; Wang X; Song H J Clin Lab Anal; 2022 Jan; 36(1):e24070. PubMed ID: 34850451 [TBL] [Abstract][Full Text] [Related]
3. Relation of circulating lncRNA GAS5 and miR-21 with biochemical indexes, stenosis severity, and inflammatory cytokines in coronary heart disease patients. Jiang Y; Du T J Clin Lab Anal; 2022 Feb; 36(2):e24202. PubMed ID: 34997773 [TBL] [Abstract][Full Text] [Related]
4. The interplay of long noncoding RNA HULC with microRNA-128-3p and their correlations with lipid level, stenosis degree, inflammatory cytokines, and cell adhesion molecules in coronary heart disease patients. Zhu X; Hu J; Xie L Ir J Med Sci; 2022 Dec; 191(6):2597-2603. PubMed ID: 35088229 [TBL] [Abstract][Full Text] [Related]
5. Long non-coding RNA MALAT1 and its target microRNA-125b associate with disease risk, severity, and major adverse cardiovascular event of coronary heart disease. Lv F; Liu L; Feng Q; Yang X J Clin Lab Anal; 2021 Apr; 35(4):e23593. PubMed ID: 33660877 [TBL] [Abstract][Full Text] [Related]
6. The relation of circulating cell division cycle 42 expression with Th1, Th2, and Th17 cells, adhesion molecules, and biochemical indexes in coronary heart disease patients. Zhou M; Wu J; Tan G Ir J Med Sci; 2022 Oct; 191(5):2085-2090. PubMed ID: 34811660 [TBL] [Abstract][Full Text] [Related]
7. Increased long non-coding RNA NORAD reflects serious cardiovascular stenosis, aggravated inflammation status, and higher lipid level in coronary heart disease. Zhang X; Kan X; Shen J; Li J J Clin Lab Anal; 2022 Nov; 36(11):e24717. PubMed ID: 36319574 [TBL] [Abstract][Full Text] [Related]
8. Circulating brain-derived neurotrophic factor dysregulation and its linkage with lipid level, stenosis degree, and inflammatory cytokines in coronary heart disease. Xia F; Zeng Q; Chen J J Clin Lab Anal; 2022 Jul; 36(7):e24546. PubMed ID: 35666604 [TBL] [Abstract][Full Text] [Related]
9. Serum Exosomal MicroRNA-186-5p Positively Correlates with Lipid Indexes, Coronary Stenosis Degree, and Major Adverse Cardiovascular Events in Coronary Heart Disease. Ren L; Liu W; Chen S; Zeng H Tohoku J Exp Med; 2024 Feb; 262(2):97-103. PubMed ID: 38057119 [TBL] [Abstract][Full Text] [Related]
10. LncRNA NEAT1 correlates with Th17 cells and proinflammatory cytokines, also reflects stenosis degree and cholesterol level in coronary heart disease patients. Zhu L; Lin X; Chen M J Clin Lab Anal; 2022 Jun; 36(6):e23975. PubMed ID: 35478415 [TBL] [Abstract][Full Text] [Related]
11. Clinical value of long non-coding RNA KCNQ1OT1 in estimating the stenosis, lipid level, inflammation status, and prognostication in coronary heart disease patients. Zhu L; Feng Q; Fan J; Huang J; Zhu Y; Wu Y; Hou A; Huo Y J Clin Lab Anal; 2023 Jan; 37(1):e24775. PubMed ID: 36458365 [TBL] [Abstract][Full Text] [Related]
12. [Relationship between serum levels of osteoproteins, inflammatory cytokines and coronary heart disease and disease severity]. Zhao F; Zhang R; Zhao H; Liu T; Ren M; Song Y; Liu S; Cong H Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2019 May; 31(5):588-593. PubMed ID: 31198145 [TBL] [Abstract][Full Text] [Related]
13. Thickness and an Altered miRNA Expression in the Epicardial Adipose Tissue Is Associated With Coronary Heart Disease in Sudden Death Victims. Marí-Alexandre J; Barceló-Molina M; Sanz-Sánchez J; Molina P; Sancho J; Abellán Y; Santaolaria-Ayora ML; Giner J; Martínez-Dolz L; Estelles A; Braza-Boïls A; Zorio E Rev Esp Cardiol (Engl Ed); 2019 Jan; 72(1):30-39. PubMed ID: 29439878 [TBL] [Abstract][Full Text] [Related]
15. Circulating microRNA-33b levels are associated with the presence and severity of coronary heart disease. Chen C; Liu Q; Li Y; Yu JW; Wang SD; Xu JL; Liu L Scand J Clin Lab Invest; 2024 Apr; 84(2):133-137. PubMed ID: 38597780 [TBL] [Abstract][Full Text] [Related]
16. Association between circulating microRNA-208a and severity of coronary heart disease. Zhang Y; Li HH; Yang R; Yang BJ; Gao ZY Scand J Clin Lab Invest; 2017 Sep; 77(5):379-384. PubMed ID: 28554251 [TBL] [Abstract][Full Text] [Related]
17. Up-regulation of long non-coding RNA THRIL in coronary heart disease: Prediction for disease risk, correlation with inflammation, coronary artery stenosis, and major adverse cardiovascular events. Qi H; Shen J; Zhou W J Clin Lab Anal; 2020 May; 34(5):e23196. PubMed ID: 31944373 [TBL] [Abstract][Full Text] [Related]
18. Interaction between microRNA expression and classical risk factors in the risk of coronary heart disease. Ding XQ; Ge PC; Liu Z; Jia H; Chen X; An FH; Li LH; Chen ZH; Mao HW; Li ZY; Gu Y; Zhu TB; Li CJ; Wang LS; Ma WZ; Yang ZJ; Jia EZ Sci Rep; 2015 Oct; 5():14925. PubMed ID: 26446730 [TBL] [Abstract][Full Text] [Related]
19. Diagnostic value of peripheral blood miR-296 combined with vascular endothelial growth factor B on the degree of coronary artery stenosis in patients with coronary heart disease. Xu L; Fu T; Wang Y; Ji N J Clin Ultrasound; 2023 Mar; 51(3):520-529. PubMed ID: 36852944 [TBL] [Abstract][Full Text] [Related]
20. Inter-correlation of lncRNA THRIL with microRNA-34a and microRNA-125b and their relationship with childhood asthma risk, severity, and inflammation. Wang X; Li W; Sun S; An H Allergol Immunopathol (Madr); 2023; 51(1):187-194. PubMed ID: 36617839 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]