BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 34861383)

  • 21. Mechanisms of resistance of hepatocyte retinoid X receptor alpha-null mice to WY-14,643-induced hepatocyte proliferation and cholestasis.
    Gyamfi MA; Wan YJ
    J Biol Chem; 2009 Apr; 284(14):9321-30. PubMed ID: 19176532
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular mechanism for growth suppression of human hepatocellular carcinoma cells by acyclic retinoid.
    Matsushima-Nishiwaki R; Okuno M; Takano Y; Kojima S; Friedman SL; Moriwaki H
    Carcinogenesis; 2003 Aug; 24(8):1353-9. PubMed ID: 12807734
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of retinoic acid in hepatic lipid homeostasis defined by genomic binding and transcriptome profiling.
    He Y; Gong L; Fang Y; Zhan Q; Liu HX; Lu Y; Guo GL; Lehman-McKeeman L; Fang J; Wan YJ
    BMC Genomics; 2013 Aug; 14():575. PubMed ID: 23981290
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MicroRNA/gene profiling unveils early molecular changes and nuclear factor erythroid related factor 2 (NRF2) activation in a rat model recapitulating human hepatocellular carcinoma (HCC).
    Petrelli A; Perra A; Cora D; Sulas P; Menegon S; Manca C; Migliore C; Kowalik MA; Ledda-Columbano GM; Giordano S; Columbano A
    Hepatology; 2014 Jan; 59(1):228-41. PubMed ID: 23857252
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High glucose-induced repression of RAR/RXR in cardiomyocytes is mediated through oxidative stress/JNK signaling.
    Singh AB; Guleria RS; Nizamutdinova IT; Baker KM; Pan J
    J Cell Physiol; 2012 Jun; 227(6):2632-44. PubMed ID: 21882190
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synergistic growth inhibition by acyclic retinoid and phosphatidylinositol 3-kinase inhibitor in human hepatoma cells.
    Baba A; Shimizu M; Ohno T; Shirakami Y; Kubota M; Kochi T; Terakura D; Tsurumi H; Moriwaki H
    BMC Cancer; 2013 Oct; 13():465. PubMed ID: 24103747
    [TBL] [Abstract][Full Text] [Related]  

  • 27. GSTZ1 deficiency promotes hepatocellular carcinoma proliferation via activation of the KEAP1/NRF2 pathway.
    Li J; Wang Q; Yang Y; Lei C; Yang F; Liang L; Chen C; Xia J; Wang K; Tang N
    J Exp Clin Cancer Res; 2019 Oct; 38(1):438. PubMed ID: 31666108
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prognostic value of the miRNA-27a and PPAR/RXRα signaling axis in patients with thyroid carcinoma.
    Toraih EA; Fawzy MS; Abushouk AI; Shaheen S; Hobani YH; Alruwetei AM; A Mansouri O; Kandil E; Badran DI
    Epigenomics; 2020 Oct; 12(20):1825-1843. PubMed ID: 32969715
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integrative transcriptome analysis of liver cancer profiles identifies upstream regulators and clinical significance of ACSM3 gene expression.
    Gopal R; Selvarasu K; Pandian PP; Ganesan K
    Cell Oncol (Dordr); 2017 Jun; 40(3):219-233. PubMed ID: 28390038
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Retinoic acid receptor-mediated signaling protects cardiomyocytes from hyperglycemia induced apoptosis: role of the renin-angiotensin system.
    Guleria RS; Choudhary R; Tanaka T; Baker KM; Pan J
    J Cell Physiol; 2011 May; 226(5):1292-307. PubMed ID: 20945395
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impaired bile acid handling and aggravated liver injury in mice expressing a hepatocyte-specific RXRα variant lacking the DNA-binding domain.
    Kosters A; Felix JC; Desai MS; Karpen SJ
    J Hepatol; 2014 Feb; 60(2):362-9. PubMed ID: 24120911
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcriptomic and Proteomic Analysis of Steatohepatitic Hepatocellular Carcinoma Reveals Novel Distinct Biologic Features.
    Van Treeck BJ; Mounajjed T; Moreira RK; Orujov M; Allende DS; Bellizzi AM; Lagana SM; Davila JI; Jessen E; Graham RP
    Am J Clin Pathol; 2021 Jan; 155(1):87-96. PubMed ID: 32885245
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multigenerational maternal obesity increases the incidence of HCC in offspring via miR-27a-3p.
    Sun Y; Wang Q; Zhang Y; Geng M; Wei Y; Liu Y; Liu S; Petersen RB; Yue J; Huang K; Zheng L
    J Hepatol; 2020 Sep; 73(3):603-615. PubMed ID: 32593682
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hepatocyte RXRalpha deficiency in matured and aged mice: impact on the expression of cancer-related hepatic genes in a gender-specific manner.
    Guo M; Gong L; He L; Lehman-McKeeman L; Wan YJ
    BMC Genomics; 2008 Aug; 9():403. PubMed ID: 18755030
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification and characterization of the human retinoid X receptor alpha gene promoter.
    Li G; Yin W; Chamberlain R; Hewett-Emmett D; Roberts JN; Yang X; Lippman SM; Clifford JL
    Gene; 2006 May; 372():118-27. PubMed ID: 16517099
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aberrant gene expression profiles in hepatocellular carcinoma detected by microdissection.
    Wei YM; Li YY; Zhang YC; Nie YQ
    Genet Mol Res; 2013 Nov; 12(4):5527-36. PubMed ID: 24301923
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pharmaceutical and nutraceutical approaches for preventing liver carcinogenesis: chemoprevention of hepatocellular carcinoma using acyclic retinoid and branched-chain amino acids.
    Shimizu M; Shirakami Y; Hanai T; Imai K; Suetsugu A; Takai K; Shiraki M; Moriwaki H
    Mol Nutr Food Res; 2014 Jan; 58(1):124-35. PubMed ID: 24273224
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fundamental studies of adrenal retinoid-X-receptor: Protein isoform, tissue expression, subcellular distribution, and ligand availability.
    Cheng B; Al-Shammari FH; Ghader IA; Sequeira F; Thakkar J; Mathew TC
    J Steroid Biochem Mol Biol; 2017 Jul; 171():110-120. PubMed ID: 28267642
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Retinoid X receptor α in human liver is regulated by miR-34a.
    Oda Y; Nakajima M; Tsuneyama K; Takamiya M; Aoki Y; Fukami T; Yokoi T
    Biochem Pharmacol; 2014 Jul; 90(2):179-87. PubMed ID: 24832862
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CD147 reprograms fatty acid metabolism in hepatocellular carcinoma cells through Akt/mTOR/SREBP1c and P38/PPARα pathways.
    Li J; Huang Q; Long X; Zhang J; Huang X; Aa J; Yang H; Chen Z; Xing J
    J Hepatol; 2015 Dec; 63(6):1378-89. PubMed ID: 26282231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.