These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
423 related articles for article (PubMed ID: 34861492)
1. Comparison of machine learning clustering algorithms for detecting heterogeneity of treatment effect in acute respiratory distress syndrome: A secondary analysis of three randomised controlled trials. Sinha P; Spicer A; Delucchi KL; McAuley DF; Calfee CS; Churpek MM EBioMedicine; 2021 Dec; 74():103697. PubMed ID: 34861492 [TBL] [Abstract][Full Text] [Related]
2. Heterogeneity of treatment effect by baseline risk of mortality in critically ill patients: re-analysis of three recent sepsis and ARDS randomised controlled trials. Santhakumaran S; Gordon A; Prevost AT; O'Kane C; McAuley DF; Shankar-Hari M Crit Care; 2019 May; 23(1):156. PubMed ID: 31053084 [TBL] [Abstract][Full Text] [Related]
3. Outcome risk model development for heterogeneity of treatment effect analyses: a comparison of non-parametric machine learning methods and semi-parametric statistical methods. Xu E; Vanghelof J; Wang Y; Patel A; Furst J; Raicu DS; Neumann JT; Wolfe R; Gao CX; McNeil JJ; Shah RC; Tchoua R BMC Med Res Methodol; 2024 Jul; 24(1):158. PubMed ID: 39044195 [TBL] [Abstract][Full Text] [Related]
4. Development and validation of parsimonious algorithms to classify acute respiratory distress syndrome phenotypes: a secondary analysis of randomised controlled trials. Sinha P; Delucchi KL; McAuley DF; O'Kane CM; Matthay MA; Calfee CS Lancet Respir Med; 2020 Mar; 8(3):247-257. PubMed ID: 31948926 [TBL] [Abstract][Full Text] [Related]
5. Heterogeneous effects of alveolar recruitment in acute respiratory distress syndrome: a machine learning reanalysis of the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial. Zampieri FG; Costa EL; Iwashyna TJ; Carvalho CRR; Damiani LP; Taniguchi LU; Amato MBP; Cavalcanti AB; Br J Anaesth; 2019 Jul; 123(1):88-95. PubMed ID: 30961913 [TBL] [Abstract][Full Text] [Related]
6. Longitudinal phenotypes in patients with acute respiratory distress syndrome: a multi-database study. Chen H; Yu Q; Xie J; Liu S; Pan C; Liu L; Huang Y; Guo F; Qiu H; Yang Y Crit Care; 2022 Nov; 26(1):340. PubMed ID: 36333766 [TBL] [Abstract][Full Text] [Related]
7. Preventing false discovery of heterogeneous treatment effect subgroups in randomized trials. Rigdon J; Baiocchi M; Basu S Trials; 2018 Jul; 19(1):382. PubMed ID: 30012181 [TBL] [Abstract][Full Text] [Related]
8. Sheep's coping style can be identified by unsupervised machine learning from unlabeled data. Çakmakçı C Behav Processes; 2022 Jan; 194():104559. PubMed ID: 34838901 [TBL] [Abstract][Full Text] [Related]
9. Machine Learning Classifier Models Can Identify Acute Respiratory Distress Syndrome Phenotypes Using Readily Available Clinical Data. Sinha P; Churpek MM; Calfee CS Am J Respir Crit Care Med; 2020 Oct; 202(7):996-1004. PubMed ID: 32551817 [No Abstract] [Full Text] [Related]
10. The potential of clustering methods to define intersection test scenarios: Assessing real-life performance of AEB. Sander U; Lubbe N Accid Anal Prev; 2018 Apr; 113():1-11. PubMed ID: 29355748 [TBL] [Abstract][Full Text] [Related]
11. Dealing with heterogeneity of treatment effects: is the literature up to the challenge? Gabler NB; Duan N; Liao D; Elmore JG; Ganiats TG; Kravitz RL Trials; 2009 Jun; 10():43. PubMed ID: 19545379 [TBL] [Abstract][Full Text] [Related]
12. Characterizing multimorbidity in ALIVE: comparing single and ensemble clustering methods. Rudolph JE; Lau B; Genberg BL; Sun J; Kirk GD; Mehta SH Am J Epidemiol; 2024 Aug; 193(8):1146-1154. PubMed ID: 38576181 [TBL] [Abstract][Full Text] [Related]
14. Clustering of trauma patients based on longitudinal data and the application of machine learning to predict recovery. Stoitsas K; Bahulikar S; de Munter L; de Jongh MAC; Jansen MAC; Jung MM; van Wingerden M; Van Deun K Sci Rep; 2022 Oct; 12(1):16990. PubMed ID: 36216874 [TBL] [Abstract][Full Text] [Related]
15. Identifying novel clinical phenotypes of acute respiratory distress syndrome using trajectories of daily fluid balance: a secondary analysis of randomized controlled trials. Wu F; Shi S; Wang Z; Wang Y; Xia L; Feng Q; Hang X; Zhu M; Zhuang J Eur J Med Res; 2024 May; 29(1):299. PubMed ID: 38807163 [TBL] [Abstract][Full Text] [Related]
16. Identifying and evaluating clinical subtypes of Alzheimer's disease in care electronic health records using unsupervised machine learning. Alexander N; Alexander DC; Barkhof F; Denaxas S BMC Med Inform Decis Mak; 2021 Dec; 21(1):343. PubMed ID: 34879829 [TBL] [Abstract][Full Text] [Related]
17. The Predictive Approaches to Treatment effect Heterogeneity (PATH) Statement. Kent DM; Paulus JK; van Klaveren D; D'Agostino R; Goodman S; Hayward R; Ioannidis JPA; Patrick-Lake B; Morton S; Pencina M; Raman G; Ross JS; Selker HP; Varadhan R; Vickers A; Wong JB; Steyerberg EW Ann Intern Med; 2020 Jan; 172(1):35-45. PubMed ID: 31711134 [TBL] [Abstract][Full Text] [Related]
18. Elevated Plasma Interleukin-18 Identifies High-Risk Acute Respiratory Distress Syndrome Patients not Distinguished by Prior Latent Class Analyses Using Traditional Inflammatory Cytokines: A Retrospective Analysis of Two Randomized Clinical Trials. Moore AR; Pienkos SM; Sinha P; Guan J; O'Kane CM; Levitt JE; Wilson JG; Shankar-Hari M; Matthay MA; Calfee CS; Baron RM; McAuley DF; Rogers AJ Crit Care Med; 2023 Dec; 51(12):e269-e274. PubMed ID: 37695136 [TBL] [Abstract][Full Text] [Related]
19. Machine learning analysis plans for randomised controlled trials: detecting treatment effect heterogeneity with strict control of type I error. Watson JA; Holmes CC Trials; 2020 Feb; 21(1):156. PubMed ID: 32041653 [TBL] [Abstract][Full Text] [Related]
20. Comparison of Unsupervised Machine Learning Approaches for Cluster Analysis to Define Subgroups of Heart Failure with Preserved Ejection Fraction with Different Outcomes. Nouraei H; Nouraei H; Rabkin SW Bioengineering (Basel); 2022 Apr; 9(4):. PubMed ID: 35447735 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]