These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
423 related articles for article (PubMed ID: 34861492)
21. Accuracy of latent-variable estimation in Bayesian semi-supervised learning. Yamazaki K Neural Netw; 2015 Sep; 69():1-10. PubMed ID: 26005790 [TBL] [Abstract][Full Text] [Related]
22. Generalizability of heterogeneous treatment effects based on causal forests applied to two randomized clinical trials of intensive glycemic control. Raghavan S; Josey K; Bahn G; Reda D; Basu S; Berkowitz SA; Emanuele N; Reaven P; Ghosh D Ann Epidemiol; 2022 Jan; 65():101-108. PubMed ID: 34280545 [TBL] [Abstract][Full Text] [Related]
23. In simulated data and health records, latent class analysis was the optimum multimorbidity clustering algorithm. Nichols L; Taverner T; Crowe F; Richardson S; Yau C; Kiddle S; Kirk P; Barrett J; Nirantharakumar K; Griffin S; Edwards D; Marshall T J Clin Epidemiol; 2022 Dec; 152():164-175. PubMed ID: 36228971 [TBL] [Abstract][Full Text] [Related]
24. Assessing Heterogeneity of Treatment Effects: Are Authors Misinterpreting Their Results? Fernandez Y Garcia E; Nguyen H; Duan N; Gabler NB; Kravitz RL Health Serv Res; 2010 Feb; 45(1):283-301. PubMed ID: 19929962 [TBL] [Abstract][Full Text] [Related]
25. Discriminative clustering via extreme learning machine. Huang G; Liu T; Yang Y; Lin Z; Song S; Wu C Neural Netw; 2015 Oct; 70():1-8. PubMed ID: 26143036 [TBL] [Abstract][Full Text] [Related]
26. Heterogeneity of treatment effect of vilobelimab in COVID-19: a secondary analysis of a randomised controlled trial. van Amstel RBE; Slim MA; Lim EHT; Rückinger S; Seymour CW; Burnett BP; Bos LDJ; van Vught LA; Riedemann NC; van de Beek D; Vlaar APJ; Crit Care; 2024 Jun; 28(1):210. PubMed ID: 38943192 [TBL] [Abstract][Full Text] [Related]
27. Head-to-head comparison of clustering methods for heterogeneous data: a simulation-driven benchmark. Preud'homme G; Duarte K; Dalleau K; Lacomblez C; Bresso E; Smaïl-Tabbone M; Couceiro M; Devignes MD; Kobayashi M; Huttin O; Ferreira JP; Zannad F; Rossignol P; Girerd N Sci Rep; 2021 Feb; 11(1):4202. PubMed ID: 33603019 [TBL] [Abstract][Full Text] [Related]
28. Pharmacophenotype identification of intensive care unit medications using unsupervised cluster analysis of the ICURx common data model. Sikora A; Rafiei A; Rad MG; Keats K; Smith SE; Devlin JW; Murphy DJ; Murray B; Kamaleswaran R; Crit Care; 2023 May; 27(1):167. PubMed ID: 37131200 [TBL] [Abstract][Full Text] [Related]
29. Effects of interventions on survival in acute respiratory distress syndrome: an umbrella review of 159 published randomized trials and 29 meta-analyses. Tonelli AR; Zein J; Adams J; Ioannidis JP Intensive Care Med; 2014 Jun; 40(6):769-87. PubMed ID: 24667919 [TBL] [Abstract][Full Text] [Related]
30. Heterogeneous treatment effect analysis based on machine-learning methodology. Gong X; Hu M; Basu M; Zhao L CPT Pharmacometrics Syst Pharmacol; 2021 Nov; 10(11):1433-1443. PubMed ID: 34716669 [TBL] [Abstract][Full Text] [Related]
31. An unsupervised machine learning method for discovering patient clusters based on genetic signatures. Lopez C; Tucker S; Salameh T; Tucker C J Biomed Inform; 2018 Sep; 85():30-39. PubMed ID: 30016722 [TBL] [Abstract][Full Text] [Related]
32. Latent class analysis-derived subphenotypes are generalisable to observational cohorts of acute respiratory distress syndrome: a prospective study. Sinha P; Delucchi KL; Chen Y; Zhuo H; Abbott J; Wang C; Wickersham N; McNeil JB; Jauregui A; Ke S; Vessel K; Gomez A; Hendrickson CM; Kangelaris KN; Sarma A; Leligdowicz A; Liu KD; Matthay MA; Ware LB; Calfee CS Thorax; 2022 Jan; 77(1):13-21. PubMed ID: 34253679 [TBL] [Abstract][Full Text] [Related]
33. An analysis framework for clustering algorithm selection with applications to spectroscopy. Crase S; Thennadil SN PLoS One; 2022; 17(3):e0266369. PubMed ID: 35358292 [TBL] [Abstract][Full Text] [Related]
34. Comparing different supervised machine learning algorithms for disease prediction. Uddin S; Khan A; Hossain ME; Moni MA BMC Med Inform Decis Mak; 2019 Dec; 19(1):281. PubMed ID: 31864346 [TBL] [Abstract][Full Text] [Related]
36. Appropriate statistical methods for analysing partially nested randomised controlled trials with continuous outcomes: a simulation study. Candlish J; Teare MD; Dimairo M; Flight L; Mandefield L; Walters SJ BMC Med Res Methodol; 2018 Oct; 18(1):105. PubMed ID: 30314463 [TBL] [Abstract][Full Text] [Related]
37. Machine Learning Approaches for Stroke Risk Prediction: Findings from the Suita Study. Vu T; Kokubo Y; Inoue M; Yamamoto M; Mohsen A; Martin-Morales A; Inoué T; Dawadi R; Araki M J Cardiovasc Dev Dis; 2024 Jul; 11(7):. PubMed ID: 39057627 [TBL] [Abstract][Full Text] [Related]
38. The future of Cochrane Neonatal. Soll RF; Ovelman C; McGuire W Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834 [TBL] [Abstract][Full Text] [Related]
39. The Utility of Unsupervised Machine Learning in Anatomic Pathology. McAlpine ED; Michelow P; Celik T Am J Clin Pathol; 2022 Jan; 157(1):5-14. PubMed ID: 34302331 [TBL] [Abstract][Full Text] [Related]