These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 34861611)

  • 1. Building and breaking of a barrier: Suberin plasticity and function in the endodermis.
    Shukla V; Barberon M
    Curr Opin Plant Biol; 2021 Dec; 64():102153. PubMed ID: 34861611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SUBERMAN regulates developmental suberization of the Arabidopsis root endodermis.
    Cohen H; Fedyuk V; Wang C; Wu S; Aharoni A
    Plant J; 2020 May; 102(3):431-447. PubMed ID: 32027440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of LOTR1 in Nutrient Transport through Organization of Spatial Distribution of Root Endodermal Barriers.
    Li B; Kamiya T; Kalmbach L; Yamagami M; Yamaguchi K; Shigenobu S; Sawa S; Danku JM; Salt DE; Geldner N; Fujiwara T
    Curr Biol; 2017 Mar; 27(5):758-765. PubMed ID: 28238658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Root endodermal barrier system contributes to defence against plant-parasitic cyst and root-knot nematodes.
    Holbein J; Franke RB; Marhavý P; Fujita S; Górecka M; Sobczak M; Geldner N; Schreiber L; Grundler FMW; Siddique S
    Plant J; 2019 Oct; 100(2):221-236. PubMed ID: 31322300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suberin plasticity to developmental and exogenous cues is regulated by a set of MYB transcription factors.
    Shukla V; Han JP; Cléard F; Lefebvre-Legendre L; Gully K; Flis P; Berhin A; Andersen TG; Salt DE; Nawrath C; Barberon M
    Proc Natl Acad Sci U S A; 2021 Sep; 118(39):. PubMed ID: 34551972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GDSL-domain proteins have key roles in suberin polymerization and degradation.
    Ursache R; De Jesus Vieira Teixeira C; Dénervaud Tendon V; Gully K; De Bellis D; Schmid-Siegert E; Grube Andersen T; Shekhar V; Calderon S; Pradervand S; Nawrath C; Geldner N; Vermeer JEM
    Nat Plants; 2021 Mar; 7(3):353-364. PubMed ID: 33686223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological roles of Casparian strips and suberin in the transport of water and solutes.
    Calvo-Polanco M; Ribeyre Z; Dauzat M; Reyt G; Hidalgo-Shrestha C; Diehl P; Frenger M; Simonneau T; Muller B; Salt DE; Franke RB; Maurel C; Boursiac Y
    New Phytol; 2021 Dec; 232(6):2295-2307. PubMed ID: 34617285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surveillance of cell wall diffusion barrier integrity modulates water and solute transport in plants.
    Wang P; Calvo-Polanco M; Reyt G; Barberon M; Champeyroux C; Santoni V; Maurel C; Franke RB; Ljung K; Novak O; Geldner N; Boursiac Y; Salt DE
    Sci Rep; 2019 Mar; 9(1):4227. PubMed ID: 30862916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The making of suberin.
    Serra O; Geldner N
    New Phytol; 2022 Aug; 235(3):848-866. PubMed ID: 35510799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracellular vesiculo-tubular structures associated with suberin deposition in plant cell walls.
    De Bellis D; Kalmbach L; Marhavy P; Daraspe J; Geldner N; Barberon M
    Nat Commun; 2022 Mar; 13(1):1489. PubMed ID: 35304458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The endodermis, a tightly controlled barrier for nutrients.
    Doblas VG; Geldner N; Barberon M
    Curr Opin Plant Biol; 2017 Oct; 39():136-143. PubMed ID: 28750257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The exodermis: A forgotten but promising apoplastic barrier.
    Liu T; Kreszies T
    J Plant Physiol; 2023 Nov; 290():154118. PubMed ID: 37871477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suberization - the second life of an endodermal cell.
    Andersen TG; Barberon M; Geldner N
    Curr Opin Plant Biol; 2015 Dec; 28():9-15. PubMed ID: 26343015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The endodermis as a checkpoint for nutrients.
    Barberon M
    New Phytol; 2017 Mar; 213(4):1604-1610. PubMed ID: 27551946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant root suberin: A layer of defence against biotic and abiotic stresses.
    Chen A; Liu T; Wang Z; Chen X
    Front Plant Sci; 2022; 13():1056008. PubMed ID: 36507443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin.
    Naseer S; Lee Y; Lapierre C; Franke R; Nawrath C; Geldner N
    Proc Natl Acad Sci U S A; 2012 Jun; 109(25):10101-6. PubMed ID: 22665765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The developmental dynamics of the sweet sorghum root transcriptome elucidate the differentiation of apoplastic barriers.
    Wei X; Yang Z; Han G; Zhao X; Yin S; Yuan F; Wang B
    Plant Signal Behav; 2020 Mar; 15(3):1724465. PubMed ID: 32024414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Apoplastic polyesters in Arabidopsis surface tissues--a typical suberin and a particular cutin.
    Franke R; Briesen I; Wojciechowski T; Faust A; Yephremov A; Nawrath C; Schreiber L
    Phytochemistry; 2005 Nov; 66(22):2643-58. PubMed ID: 16289150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo cytological and chemical analysis of Casparian strips using stimulated Raman scattering microscopy.
    Man Y; Zhao Y; Ye R; Lin J; Jing Y
    J Plant Physiol; 2018 Jan; 220():136-144. PubMed ID: 29175545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tissue-Autonomous Phenylpropanoid Production Is Essential for Establishment of Root Barriers.
    Andersen TG; Molina D; Kilian J; Franke RB; Ragni L; Geldner N
    Curr Biol; 2021 Mar; 31(5):965-977.e5. PubMed ID: 33529644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.