These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 34862105)
1. A novel approach for simultaneous recycling of Ti-bearing blast furnace slag, diamond wire saw Si powder, and Al alloy scrap for preparing TiSi Zhang Y; Lei Y; Ma W; Zhai C; Shi Z; Ren Y J Hazard Mater; 2022 Apr; 427():127905. PubMed ID: 34862105 [TBL] [Abstract][Full Text] [Related]
2. Simultaneous recycling of Si and Ti from diamond wire saw silicon powder and Ti-bearing blast furnace slag via reduction smelting: An investigation of the effects of refractories on recycling. Zhang Y; Lei Y; Ma W; Ren Y Waste Manag; 2023 Feb; 157():36-46. PubMed ID: 36521299 [TBL] [Abstract][Full Text] [Related]
3. Recycling of Ti and Si from Ti-bearing blast furnace slag and diamond wire saw silicon waste by flux alloying technique. Cao J; Gu HZ; Wu JJ; Wei KX; Zeng Y; Ma WH J Environ Manage; 2024 Jun; 362():121302. PubMed ID: 38824896 [TBL] [Abstract][Full Text] [Related]
4. An approach for simultaneous treatments of diamond wire saw silicon kerf and Ti-bearing blast furnace slag. Wang C; Lei Y; Ma W; Qiu P J Hazard Mater; 2021 Jan; 401():123446. PubMed ID: 32763720 [TBL] [Abstract][Full Text] [Related]
5. A novel process to recycle coal gasification fine slag by preparing Si-Fe-Al-Ca alloy. Wang Y; Zhang Z; Li L; Guo X; Wei D; Kong J; Du H; Wang H; Zhuang Y; Xing P J Environ Manage; 2023 Jul; 337():117681. PubMed ID: 36931070 [TBL] [Abstract][Full Text] [Related]
6. Preparation of Al-Si alloys with silicon cutting waste from diamond wire sawing process. Wei D; Kong J; Gao S; Zhou S; Zhuang Y; Xing P J Environ Manage; 2021 Jul; 290():112548. PubMed ID: 33878628 [TBL] [Abstract][Full Text] [Related]
7. An efficient method of preparing Si-Fe-Al-Ca alloy from coal gasification fine slag via plasma smelting and alternating current magnetic field. Wang Y; Li H; Zhang Z; Guo X; Du H; Wang H; Zhuang Y; Xing P J Environ Manage; 2024 Apr; 357():120760. PubMed ID: 38581891 [TBL] [Abstract][Full Text] [Related]
8. Scalable Synthesis of a Porous Micro Si/Si-Ti Alloy Anode for Lithium-Ion Battery from Recovery of Titanium-Blast Furnace Slag. Liu Y; Zhong Y; Zeng Z; Zhang P; Zhang H; Zhang Z; Gao F; Ma X; Terrones M; Wang Y; Wang Y ACS Appl Mater Interfaces; 2023 Nov; 15(47):54539-54549. PubMed ID: 37964444 [TBL] [Abstract][Full Text] [Related]
9. Thermodynamic and Experimental Studies of Selective Decomposition of Diopside in Ti-Bearing Blast Furnace Slag. Kumai E; Yang F; Xiang L ACS Omega; 2024 Aug; 9(34):36635-36639. PubMed ID: 39220505 [TBL] [Abstract][Full Text] [Related]
10. Recycling of silicon from waste PV diamond wire sawing silicon powders: A strategy of Na Zou Q; Huang L; Chen W; Chen G; Li Y; Li M; Zhang C; Luo X Waste Manag; 2023 Aug; 168():107-115. PubMed ID: 37290339 [TBL] [Abstract][Full Text] [Related]
11. Recycling of diamond-wire sawing silicon powder by direct current assisted directional solidification. Hu Z; Wang G; Li J; Tan Y; Liu Y; Li P Waste Manag; 2023 Feb; 157():190-198. PubMed ID: 36563517 [TBL] [Abstract][Full Text] [Related]
12. Thermodynamics analysis and experiments on Ti-bearing blast furnace slag leaching enhanced by sulfuric acid roasting. Zhou L; Peng T; Sun H; Wang S RSC Adv; 2022 Dec; 12(54):34990-35001. PubMed ID: 36540258 [TBL] [Abstract][Full Text] [Related]
13. Efficient recycling of silicon cutting waste for producing high-quality Si-Fe alloys. Wei D; Zhou S; Kong J; Zhuang Y; Xing P Environ Sci Pollut Res Int; 2023 May; 30(22):62355-62366. PubMed ID: 36940036 [TBL] [Abstract][Full Text] [Related]
14. Leaching kinetic mechanism of iron from the diamond wire saw silicon powder by HCl. Zhang Z; Guo X; Wang Y; Wei D; Wang H; Li H; Zhuang Y; Xing P Waste Manag; 2023 Sep; 169():82-90. PubMed ID: 37418787 [TBL] [Abstract][Full Text] [Related]
15. Kinetics of extracting valuable components from Ti-bearing blast furnace slag by acidolysis with sulphuric acid. Wang Y; Gao X; He S; Guo J Front Chem; 2024; 12():1369937. PubMed ID: 38389723 [TBL] [Abstract][Full Text] [Related]
16. Efficient recycling of silicon cutting waste by AlSi alloying with the assistance of cryolite. Wei D; Kong J; Lyu J; Zhuang Y; Xing P Sci Total Environ; 2022 Apr; 816():151580. PubMed ID: 34774957 [TBL] [Abstract][Full Text] [Related]
17. Recycling of silicon from silicon cutting waste by Al-Si alloying in cryolite media and its mechanism analysis. Wei D; Kong J; Gao S; Zhou S; Jin X; Jiang S; Zhuang Y; Du X; Xing P Environ Pollut; 2020 Oct; 265(Pt A):114892. PubMed ID: 32526632 [TBL] [Abstract][Full Text] [Related]
18. A novel recycling approach for efficient extraction of titanium from high-titanium-bearing blast furnace slag. Fan G; Wang M; Dang J; Zhang R; Lv Z; He W; Lv X Waste Manag; 2021 Feb; 120():626-634. PubMed ID: 33176939 [TBL] [Abstract][Full Text] [Related]
19. Co-treatment of diamond-wire-saw silicon kerf and spent automotive catalysts for simultaneous recovery of PGMs, REEs, Zr, and high-purity Si. Yang D; Yang Q; Ma W; Wang S; Lei Y Waste Manag; 2023 Sep; 171():237-247. PubMed ID: 37678072 [TBL] [Abstract][Full Text] [Related]
20. Microstructures and Isothermal Oxidation of the Alumina Scale Forming Nb Ghadyani M; Utton C; Tsakiropoulos P Materials (Basel); 2019 Mar; 12(5):. PubMed ID: 30841625 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]