These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 34862107)

  • 1. Molecular modeling of nanoplastic transformations in alveolar fluid and impacts on the lung surfactant film.
    Li L; Xu Y; Li S; Zhang X; Feng H; Dai Y; Zhao J; Yue T
    J Hazard Mater; 2022 Apr; 427():127872. PubMed ID: 34862107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular interactions with polystyrene nanoplastics-The role of particle size and protein corona.
    Kihara S; Ashenden A; Kaur M; Glasson J; Ghosh S; van der Heijden N; Brooks AES; Mata JP; Holt S; Domigan LJ; Köper I; McGillivray DJ
    Biointerphases; 2021 Jul; 16(4):041001. PubMed ID: 34241329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The environmental fate of nanoplastics: What we know and what we need to know about aggregation.
    Pradel A; Catrouillet C; Gigault J
    NanoImpact; 2023 Jan; 29():100453. PubMed ID: 36708989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of Nanoscale Particles of Five Major Polymers as Potential Standards for the Study of Nanoplastics.
    Tanaka K; Takahashi Y; Kuramochi H; Osako M; Tanaka S; Suzuki G
    Small; 2021 Dec; 17(49):e2105781. PubMed ID: 34719868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of nanoplastic surface charge on eco-corona formation, aggregation and toxicity to freshwater zooplankton.
    Saavedra J; Stoll S; Slaveykova VI
    Environ Pollut; 2019 Sep; 252(Pt A):715-722. PubMed ID: 31185361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the transformations of nanoplastic onto phospholipid bilayers: Mechanism, microscopic interaction and cytotoxicity assessment.
    Yuan S; Zhang H; Yuan S
    Sci Total Environ; 2023 Feb; 859(Pt 2):160388. PubMed ID: 36414060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Proposed In Vitro Method to Assess Effects of Inhaled Particles on Lung Surfactant Function.
    Sørli JB; Da Silva E; Bäckman P; Levin M; Thomsen BL; Koponen IK; Larsen ST
    Am J Respir Cell Mol Biol; 2016 Mar; 54(3):306-11. PubMed ID: 26524226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoplastic occurrence in a soil amended with plastic debris.
    Wahl A; Le Juge C; Davranche M; El Hadri H; Grassl B; Reynaud S; Gigault J
    Chemosphere; 2021 Jan; 262():127784. PubMed ID: 32777612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoplastic State and Fate in Aquatic Environments: Multiscale Modeling.
    Lins TF; O'Brien AM; Zargartalebi M; Sinton D
    Environ Sci Technol; 2022 Apr; 56(7):4017-4028. PubMed ID: 35311252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of soft and hard protein corona around polystyrene nanoplastics-Particle size and protein types.
    Kihara S; Ghosh S; McDougall DR; Whitten AE; Mata JP; Köper I; McGillivray DJ
    Biointerphases; 2020 Sep; 15(5):051002. PubMed ID: 32948094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Melatonin reduces nanoplastic uptake, translocation, and toxicity in wheat.
    Li S; Guo J; Wang T; Gong L; Liu F; Brestic M; Liu S; Song F; Li X
    J Pineal Res; 2021 Oct; 71(3):e12761. PubMed ID: 34392562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoplastics affect the inflammatory cytokine release by primary human monocytes and dendritic cells.
    Weber A; Schwiebs A; Solhaug H; Stenvik J; Nilsen AM; Wagner M; Relja B; Radeke HH
    Environ Int; 2022 May; 163():107173. PubMed ID: 35303527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Materials, surfaces, and interfacial phenomena in nanoplastics toxicology research.
    Martin LMA; Gan N; Wang E; Merrill M; Xu W
    Environ Pollut; 2022 Jan; 292(Pt B):118442. PubMed ID: 34748888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Formation and characteristics of polystyrene nanoplastic-plant protein corona].
    Meng F; Yu Y; Zhang Q; Zhao C; Yang W; Luan Y; Dai W
    Sheng Wu Gong Cheng Xue Bao; 2023 Mar; 39(3):1188-1201. PubMed ID: 36994581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an adverse outcome pathway for nanoplastic toxicity in Daphnia pulex using proteomics.
    Liu Z; Li Y; Sepúlveda MS; Jiang Q; Jiao Y; Chen Q; Huang Y; Tian J; Zhao Y
    Sci Total Environ; 2021 Apr; 766():144249. PubMed ID: 33421781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reviewing nanoplastic toxicology: It's an interface problem.
    Kihara S; Köper I; Mata JP; McGillivray DJ
    Adv Colloid Interface Sci; 2021 Feb; 288():102337. PubMed ID: 33385776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation and identification of nanoplastics in tap water.
    Li Y; Wang Z; Guan B
    Environ Res; 2022 Mar; 204(Pt B):112134. PubMed ID: 34597658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time evolution of protein corona formed by polystyrene nanoplastics and urease.
    Yu Y; Luan Y; Dai W
    Int J Biol Macromol; 2022 Oct; 218():72-81. PubMed ID: 35870622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioeffects of Inhaled Nanoplastics on Neurons and Alteration of Animal Behaviors through Deposition in the Brain.
    Liu X; Zhao Y; Dou J; Hou Q; Cheng J; Jiang X
    Nano Lett; 2022 Feb; 22(3):1091-1099. PubMed ID: 35089039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential health risks of the interaction of microplastics and lung surfactant.
    Shi W; Cao Y; Chai X; Zhao Q; Geng Y; Liu D; Tian S
    J Hazard Mater; 2022 May; 429():128109. PubMed ID: 35236033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.