These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 34862438)

  • 21. [Experimental studies on the influence of millimeter radiation on light transmission through the lens].
    Prost M; Olchowik G; Hautz W; Gaweda R
    Klin Oczna; 1994; 96(8-9):257-9. PubMed ID: 7897988
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combined microwave energy and fixative agent for cataract induction in pig eyes.
    Shentu X; Tang X; Ye P; Yao K
    J Cataract Refract Surg; 2009 Jul; 35(7):1150-5. PubMed ID: 19545801
    [TBL] [Abstract][Full Text] [Related]  

  • 23. N-Acetylcysteine amide (NACA) and diNACA inhibit H
    Martis RM; Grey AC; Wu H; Wall GM; Donaldson PJ; Lim JC
    Exp Eye Res; 2023 Sep; 234():109610. PubMed ID: 37536438
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ursodeoxycholic acid prevents selenite-induced oxidative stress and alleviates cataract formation: In vitro and in vivo studies.
    Qi HP; Wei SQ; Gao XC; Yu NN; Hu WZ; Bi S; Cui H
    Mol Vis; 2012; 18():151-60. PubMed ID: 22275806
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vitro antioxidant and anticataractogenic potential of silver nanoparticles biosynthesized using an ethanolic extract of Tabernaemontana divaricata leaves.
    Anbukkarasi M; Thomas PA; Sheu JR; Geraldine P
    Biomed Pharmacother; 2017 Jul; 91():467-475. PubMed ID: 28477463
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lens Fragmentation with Picosecond Laser Pulses After Artificial Cataract Induction with Microwaves.
    Körber M; Giese A; Kottcke M; Luciani F; Schmidbauer JM; Braun B
    Photobiomodul Photomed Laser Surg; 2024 Aug; 42(8):534-540. PubMed ID: 39150372
    [No Abstract]   [Full Text] [Related]  

  • 27. Protective Effects of Trimetazidine in Retarding Selenite-Induced Lens Opacification.
    Fang W; Ye Q; Yao Y; Xiu Y; Gu F; Zhu Y
    Curr Eye Res; 2019 Dec; 44(12):1325-1336. PubMed ID: 31284779
    [No Abstract]   [Full Text] [Related]  

  • 28. The optical properties of rat, porcine and human lenses in organ culture treated with dexamethasone.
    Bree M; Borchman D
    Exp Eye Res; 2018 May; 170():67-75. PubMed ID: 29470954
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preventive effect of diethyldithiocarbamate on selenite-induced opacity in cultured rat lenses.
    Ito Y; Cai H; Terao M; Tomohiro M
    Ophthalmic Res; 2001; 33(1):52-9. PubMed ID: 11114606
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Morphological studies of an ion-dependent perinuclear cataract model.
    Groth-Vasselli B; Robinson D; Lally J; Schleich T; Farnsworth P
    Exp Eye Res; 1988 Sep; 47(3):415-28. PubMed ID: 3181325
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prevention of selenite-induced opacification and biochemical changes in the rat pup lens through amiloride pretreatment.
    Yilmaz G; Turan B; Celebi N; Yilmaz N; Demirel Yilmaz E
    Curr Eye Res; 2000 Jun; 20(6):454-61. PubMed ID: 10980657
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The involvement of calpains in opacification induced by Ca2+-overload in ovine lens culture.
    Lee HY; Morton JD; Sanderson J; Bickerstaffe R; Robertson LJ
    Vet Ophthalmol; 2008; 11(6):347-55. PubMed ID: 19046274
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anti-cataractogenic effect of curcumin and aminoguanidine against selenium-induced oxidative stress in the eye lens of Wistar rat pups: An in vitro study using isolated lens.
    Manikandan R; Thiagarajan R; Beulaja S; Chindhu S; Mariammal K; Sudhandiran G; Arumugam M
    Chem Biol Interact; 2009 Oct; 181(2):202-9. PubMed ID: 19481068
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hyperoxia-induced lens damage in rabbit: protective effects of N-acetylcysteine.
    Wang P; Liu XC; Yan H; Li MY
    Mol Vis; 2009 Dec; 15():2945-52. PubMed ID: 20057910
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vitro studies of microwave-induced cataract: separation of field and heating effects.
    Stewart-DeHaan PJ; Creighton MO; Larsen LE; Jacobi JH; Ross WM; Sanwal M; Guo TC; Guo WW; Trevithick JR
    Exp Eye Res; 1983 Jan; 36(1):75-90. PubMed ID: 6825735
    [No Abstract]   [Full Text] [Related]  

  • 36. Changes in lens stiffness due to capsular opacification in accommodative lens refilling.
    Nibourg LM; Sharma PK; van Kooten TG; Koopmans SA
    Exp Eye Res; 2015 May; 134():148-54. PubMed ID: 25704214
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ocular effects of microwave radiation.
    Carpenter RL
    Bull N Y Acad Med; 1979 Dec; 55(11):1048-57. PubMed ID: 295242
    [No Abstract]   [Full Text] [Related]  

  • 38. [New regulatory protein isolated from the bovine eye lens and its action on the cataract development in rat in vitro].
    Krasnov MS; Gurmizov EP; Iamskova VP; Gundorova RA; Iamskov IA
    Vestn Oftalmol; 2005; 121(1):37-9. PubMed ID: 15759848
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A new steroid-induced cataract model in the rat: long-term prednisolone applications with a minimum of X-irradiation.
    Shui YB; Kojima M; Sasaki K
    Ophthalmic Res; 1996; 28 Suppl 2():92-101. PubMed ID: 8883095
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nerve growth factor (NGF) and lenses: effects of NGF in an in vitro rat model of cataract.
    Ghinelli E; Aloe L; Cortes M; Micera A; Lambiase A; Bonini S
    Graefes Arch Clin Exp Ophthalmol; 2003 Oct; 241(10):845-51. PubMed ID: 13680251
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.