These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34862561)

  • 1. What makes a good prediction? Feature importance and beginning to open the black box of machine learning in genetics.
    Musolf AM; Holzinger ER; Malley JD; Bailey-Wilson JE
    Hum Genet; 2022 Sep; 141(9):1515-1528. PubMed ID: 34862561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Review of Machine Learning Algorithms for Biomedical Applications.
    Binson VA; Thomas S; Subramoniam M; Arun J; Naveen S; Madhu S
    Ann Biomed Eng; 2024 May; 52(5):1159-1183. PubMed ID: 38383870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification of patients with chronic disease by activation level using machine learning methods.
    Demiray O; Gunes ED; Kulak E; Dogan E; Karaketir SG; Cifcili S; Akman M; Sakarya S
    Health Care Manag Sci; 2023 Dec; 26(4):626-650. PubMed ID: 37824033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting malaria outbreak in The Gambia using machine learning techniques.
    Khan O; Ajadi JO; Hossain MP
    PLoS One; 2024; 19(5):e0299386. PubMed ID: 38753678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Review of machine learning and deep learning models for toxicity prediction.
    Guo W; Liu J; Dong F; Song M; Li Z; Khan MKH; Patterson TA; Hong H
    Exp Biol Med (Maywood); 2023 Nov; 248(21):1952-1973. PubMed ID: 38057999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of machine learning in rare diseases: a scoping review.
    Schaefer J; Lehne M; Schepers J; Prasser F; Thun S
    Orphanet J Rare Dis; 2020 Jun; 15(1):145. PubMed ID: 32517778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Chemometric Problems in Food Analysis Using Non-Linear Methods.
    Rocha WFC; Prado CBD; Blonder N
    Molecules; 2020 Jul; 25(13):. PubMed ID: 32630676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine Learning Based Toxicity Prediction: From Chemical Structural Description to Transcriptome Analysis.
    Wu Y; Wang G
    Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30103448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Causal Phenotype Discovery via Deep Networks.
    Kale DC; Che Z; Bahadori MT; Li W; Liu Y; Wetzel R
    AMIA Annu Symp Proc; 2015; 2015():677-86. PubMed ID: 26958203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ensemble of rankers for efficient gene signature extraction in smoke exposure classification.
    Giordano M; Tripathi KP; Guarracino MR
    BMC Bioinformatics; 2018 Mar; 19(Suppl 2):48. PubMed ID: 29536823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Attributes of Survey Items to Predict Response Times May Benefit Survey Research.
    Schneider S; Jin H; Orriens B; Junghaenel DU; Kapteyn A; Meijer E; Stone AA
    Field methods; 2023 May; 35(2):87-99. PubMed ID: 37799827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Publisher Correction: Machine learning for genetics-based classification and treatment response prediction in cancer of unknown primary.
    Moon I; LoPiccolo J; Baca SC; Sholl LM; Kehl KL; Hassett MJ; Liu D; Schrag D; Gusev A
    Nat Med; 2024 Feb; 30(2):607. PubMed ID: 37968374
    [No Abstract]   [Full Text] [Related]  

  • 13. Tailoring Household Disaster Preparedness Interventions to Reduce Health Disparities: Nursing Implications from Machine Learning Importance Features from the 2018-2020 FEMA National Household Survey.
    Shukla M; Amberson T; Heagele T; McNeill C; Adams L; Ndayishimiye K; Castner J
    Int J Environ Res Public Health; 2024 Apr; 21(5):. PubMed ID: 38791736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overcoming Limitations to Deep Learning in Domesticated Animals with TrioTrain.
    Kalleberg J; Rissman J; Schnabel RD
    bioRxiv; 2024 Apr; ():. PubMed ID: 38659907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial intelligence in Immuno-genetics.
    Farzan R
    Bioinformation; 2024; 20(1):29-35. PubMed ID: 38352901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning-based prediction model of acute kidney injury in patients with acute respiratory distress syndrome.
    Wei S; Zhang Y; Dong H; Chen Y; Wang X; Zhu X; Zhang G; Guo S
    BMC Pulm Med; 2023 Oct; 23(1):370. PubMed ID: 37789305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interpretable machine-learning model for Predicting the Convalescent COVID-19 patients with pulmonary diffusing capacity impairment.
    Ma FQ; He C; Yang HR; Hu ZW; Mao HR; Fan CY; Qi Y; Zhang JX; Xu B
    BMC Med Inform Decis Mak; 2023 Aug; 23(1):169. PubMed ID: 37644543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Future implications of ChatGPT in pharmaceutical industry: drug discovery and development.
    Zhao A; Wu Y
    Front Pharmacol; 2023; 14():1194216. PubMed ID: 37529703
    [No Abstract]   [Full Text] [Related]  

  • 19. Artificial Intelligence Distinguishes Pathological Gait: The Analysis of Markerless Motion Capture Gait Data Acquired by an iOS Application (TDPT-GT).
    Iseki C; Hayasaka T; Yanagawa H; Komoriya Y; Kondo T; Hoshi M; Fukami T; Kobayashi Y; Ueda S; Kawamae K; Ishikawa M; Yamada S; Aoyagi Y; Ohta Y
    Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37448065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Harnessing deep learning into hidden mutations of neurological disorders for therapeutic challenges.
    Yang S; Kim SH; Kang M; Joo JY
    Arch Pharm Res; 2023 Jun; 46(6):535-549. PubMed ID: 37261600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.