These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
486 related articles for article (PubMed ID: 34862724)
1. Regulating Interfacial Desolvation and Deposition Kinetics Enables Durable Zn Anodes with Ultrahigh Utilization of 80. Jin H; Dai S; Xie K; Luo Y; Liu K; Zhu Z; Huang L; Huang L; Zhou J Small; 2022 Jan; 18(4):e2106441. PubMed ID: 34862724 [TBL] [Abstract][Full Text] [Related]
2. Synergistic Manipulation of Zn Yang Y; Liu C; Lv Z; Yang H; Zhang Y; Ye M; Chen L; Zhao J; Li CC Adv Mater; 2021 Mar; 33(11):e2007388. PubMed ID: 33554430 [TBL] [Abstract][Full Text] [Related]
3. Molecular-Level Zn-Ion Transfer Pump Specifically Functioning on (002) Facets Enables Durable Zn Anodes. Zhu Z; Jin H; Xie K; Dai S; Luo Y; Qi B; Wang Z; Zhuang X; Liu K; Hu B; Huang L; Zhou J Small; 2022 Dec; 18(49):e2204713. PubMed ID: 36285726 [TBL] [Abstract][Full Text] [Related]
4. Highly Reversible and Dendrite-Free Zinc Anodes Enabled by PEDOT Nanowire Interfacial Layers for Aqueous Zinc-Ion Batteries. Wang Y; Zhang Z; Wang L; Wang J; Meng W; Sun J; Li Q; He X; Liu Z; Lei Z ACS Appl Mater Interfaces; 2024 Aug; 16(32):43026-43037. PubMed ID: 39093713 [TBL] [Abstract][Full Text] [Related]
5. Synergistically Stabilizing Zinc Anodes by Molybdenum Dioxide Coating and Tween 80 Electrolyte Additive for High-Performance Aqueous Zinc-Ion Batteries. Thieu NA; Li W; Chen X; Li Q; Wang Q; Velayutham M; Grady ZM; Li X; Li W; Khramtsov VV; Reed DM; Li X; Liu X ACS Appl Mater Interfaces; 2023 Dec; 15(48):55570-55586. PubMed ID: 38058105 [TBL] [Abstract][Full Text] [Related]
6. Regulating Zn Ion Desolvation and Deposition Chemistry Toward Durable and Fast Rechargeable Zn Metal Batteries. Zhou Y; Li G; Feng S; Qin H; Wang Q; Shen F; Liu P; Huang Y; He H Adv Sci (Weinh); 2023 Feb; 10(6):e2205874. PubMed ID: 36574480 [TBL] [Abstract][Full Text] [Related]
7. Electrolyte Design for In Situ Construction of Highly Zn Zeng X; Mao J; Hao J; Liu J; Liu S; Wang Z; Wang Y; Zhang S; Zheng T; Liu J; Rao P; Guo Z Adv Mater; 2021 Mar; 33(11):e2007416. PubMed ID: 33576130 [TBL] [Abstract][Full Text] [Related]
8. Dendrite-Free Anodes Enabled by a Composite of a ZnAl Alloy with a Copper Mesh for High-Performing Aqueous Zinc-Ion Batteries. Qi Z; Xiong T; Chen T; Yu C; Zhang M; Yang Y; Deng Z; Xiao H; Lee WSV; Xue J ACS Appl Mater Interfaces; 2021 Jun; 13(24):28129-28139. PubMed ID: 34110142 [TBL] [Abstract][Full Text] [Related]
9. Multifunctional Self-Assembled Bio-Interfacial Layers for High-Performance Zinc Metal Anodes. Lu J; Wang T; Yang J; Shen X; Pang H; Sun B; Wang G; Wang C Angew Chem Int Ed Engl; 2024 Oct; 63(42):e202409838. PubMed ID: 39058295 [TBL] [Abstract][Full Text] [Related]
10. Robust Zinc Anode Enabled by Sulfonate-Rich MOF-Modified Separator. Chen R; Zhang G; Zhou H; Li J; Li J; Chung LH; Hu X; He J Small; 2024 Feb; 20(8):e2305687. PubMed ID: 37840433 [TBL] [Abstract][Full Text] [Related]
11. Weak Solvation Effect Induced Optimal Interfacial Chemistry Enables Highly Durable Zn Anodes for Aqueous Zn-Ion Batteries. Cao X; Xu W; Zheng D; Wang F; Wang Y; Shi X; Lu X Angew Chem Int Ed Engl; 2024 Feb; 63(6):e202317302. PubMed ID: 38116830 [TBL] [Abstract][Full Text] [Related]
12. Addition of Dioxane in Electrolyte Promotes (002)-Textured Zinc Growth and Suppressed Side Reactions in Zinc-Ion Batteries. Wei T; Ren Y; Wang Y; Mo L; Li Z; Zhang H; Hu L; Cao G ACS Nano; 2023 Feb; 17(4):3765-3775. PubMed ID: 36752806 [TBL] [Abstract][Full Text] [Related]
13. A Highly Reversible Zinc Anode for Rechargeable Aqueous Batteries. Jian Q; Wan Y; Lin Y; Ni M; Wu M; Zhao T ACS Appl Mater Interfaces; 2021 Nov; 13(44):52659-52669. PubMed ID: 34723460 [TBL] [Abstract][Full Text] [Related]
14. Interfacial Reconstruction for Regulating Zn Yang C; Zhang X; Cao J; Zhang D; Kidkhunthod P; Wannapaiboon S; Qin J ACS Appl Mater Interfaces; 2023 Jun; 15(22):26718-26727. PubMed ID: 37218675 [TBL] [Abstract][Full Text] [Related]
15. A "Zn Bai M; Chen J; Li Q; Wang X; Li J; Lin X; Shao S; Li D; Wang Z Small; 2024 Oct; 20(42):e2403380. PubMed ID: 38837583 [TBL] [Abstract][Full Text] [Related]
16. Surface modulation of zinc anodes by foveolate ZnTe nanoarrays for dendrite-free zinc ion batteries. He Y; Wang C; Gan Y; Kang L; Xie L; He Y; Wu Z; Tong G; Zhang H; Hu Q Dalton Trans; 2024 Jan; 53(5):2341-2348. PubMed ID: 38205856 [TBL] [Abstract][Full Text] [Related]
17. Zincophilic Nanospheres Assembled as Solid-Electrolyte Interphase on Zn Metal Anodes for Reversible High-rate Zn-Ion Storage. Shao H; Zhang X; Zhou Y; Zhang T; Wang X; Jiao B; Xiao W; Feng W; Wang X; Di J Small; 2024 Oct; 20(43):e2403062. PubMed ID: 38940238 [TBL] [Abstract][Full Text] [Related]
18. Amino-Functionalized Interfacial Layer Enables an Ultra-Uniform Amorphous Solid Electrolyte Interphase for High-Performance Aqueous Zinc-Based Batteries. Kang L; Zheng J; Yue K; Yuan H; Luo J; Wang Y; Liu Y; Nai J; Tao X Small; 2023 Nov; 19(44):e2304094. PubMed ID: 37386782 [TBL] [Abstract][Full Text] [Related]
19. Advanced Zinc Anode with Nitrogen-Doping Interface Induced by Plasma Surface Treatment. Jia H; Qiu M; Lan C; Liu H; Dirican M; Fu S; Zhang X Adv Sci (Weinh); 2022 Jan; 9(3):e2103952. PubMed ID: 34825781 [TBL] [Abstract][Full Text] [Related]
20. Tannic acid assisted metal-chelate interphase toward highly stable Zn metal anodes in rechargeable aqueous zinc-ion batteries. Hu N; Qin H; Chen X; Huang Y; Xu J; He H Front Chem; 2022; 10():981623. PubMed ID: 36034665 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]