BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 34862761)

  • 1. Reversible Kinetic Trapping of FUS Biomolecular Condensates.
    Chatterjee S; Kan Y; Brzezinski M; Koynov K; Regy RM; Murthy AC; Burke KA; Michels JJ; Mittal J; Fawzi NL; Parekh SH
    Adv Sci (Weinh); 2022 Feb; 9(4):e2104247. PubMed ID: 34862761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aging can transform single-component protein condensates into multiphase architectures.
    Garaizar A; Espinosa JR; Joseph JA; Krainer G; Shen Y; Knowles TPJ; Collepardo-Guevara R
    Proc Natl Acad Sci U S A; 2022 Jun; 119(26):e2119800119. PubMed ID: 35727989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational Freedom and Topological Confinement of Proteins in Biomolecular Condensates.
    Scholl D; Deniz AA
    J Mol Biol; 2022 Jan; 434(1):167348. PubMed ID: 34767801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycine-Rich Peptides from FUS Have an Intrinsic Ability to Self-Assemble into Fibers and Networked Fibrils.
    Kar M; Posey AE; Dar F; Hyman AA; Pappu RV
    Biochemistry; 2021 Nov; 60(43):3213-3222. PubMed ID: 34648275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of FUS Protein Condensates with an Adapted Coarse-Grained Model.
    Benayad Z; von Bülow S; Stelzl LS; Hummer G
    J Chem Theory Comput; 2021 Jan; 17(1):525-537. PubMed ID: 33307683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-Protein Collapse Determines Phase Equilibria of a Biological Condensate.
    Chou HY; Aksimentiev A
    J Phys Chem Lett; 2020 Jun; 11(12):4923-4929. PubMed ID: 32426986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HspB8 prevents aberrant phase transitions of FUS by chaperoning its folded RNA-binding domain.
    Boczek EE; Fürsch J; Niedermeier ML; Jawerth L; Jahnel M; Ruer-Gruß M; Kammer KM; Heid P; Mediani L; Wang J; Yan X; Pozniakovski A; Poser I; Mateju D; Hubatsch L; Carra S; Alberti S; Hyman AA; Stengel F
    Elife; 2021 Sep; 10():. PubMed ID: 34487489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear Import Receptor Inhibits Phase Separation of FUS through Binding to Multiple Sites.
    Yoshizawa T; Ali R; Jiou J; Fung HYJ; Burke KA; Kim SJ; Lin Y; Peeples WB; Saltzberg D; Soniat M; Baumhardt JM; Oldenbourg R; Sali A; Fawzi NL; Rosen MK; Chook YM
    Cell; 2018 Apr; 173(3):693-705.e22. PubMed ID: 29677513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The liquid-to-solid transition of FUS is promoted by the condensate surface.
    Shen Y; Chen A; Wang W; Shen Y; Ruggeri FS; Aime S; Wang Z; Qamar S; Espinosa JR; Garaizar A; St George-Hyslop P; Collepardo-Guevara R; Weitz DA; Vigolo D; Knowles TPJ
    Proc Natl Acad Sci U S A; 2023 Aug; 120(33):e2301366120. PubMed ID: 37549257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic forces from protein and water govern condensate formation of an intrinsically disordered protein domain.
    Mukherjee S; Schäfer LV
    Nat Commun; 2023 Sep; 14(1):5892. PubMed ID: 37735186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleation of Biomolecular Condensates from Finite-Sized Simulations.
    Li L; Paloni M; Finney AR; Barducci A; Salvalaglio M
    J Phys Chem Lett; 2023 Feb; 14(7):1748-1755. PubMed ID: 36758221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surfactants or scaffolds? RNAs of varying lengths control the thermodynamic stability of condensates differently.
    Sanchez-Burgos I; Herriott L; Collepardo-Guevara R; Espinosa JR
    Biophys J; 2023 Jul; 122(14):2973-2987. PubMed ID: 36883003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular interactions contributing to FUS SYGQ LC-RGG phase separation and co-partitioning with RNA polymerase II heptads.
    Murthy AC; Tang WS; Jovic N; Janke AM; Seo DH; Perdikari TM; Mittal J; Fawzi NL
    Nat Struct Mol Biol; 2021 Nov; 28(11):923-935. PubMed ID: 34759379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-Dependent Material Properties of Aging Biomolecular Condensates from Different Viscoelasticity Measurements in Molecular Dynamics Simulations.
    Tejedor AR; Collepardo-Guevara R; Ramírez J; Espinosa JR
    J Phys Chem B; 2023 May; 127(20):4441-4459. PubMed ID: 37194953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of FUS Protein Fibrils and Its Relevance to Self-Assembly and Phase Separation of Low-Complexity Domains.
    Murray DT; Kato M; Lin Y; Thurber KR; Hung I; McKnight SL; Tycko R
    Cell; 2017 Oct; 171(3):615-627.e16. PubMed ID: 28942918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism underlying liquid-to-solid phase transition in fused in sarcoma liquid droplets.
    Li S; Yoshizawa T; Shiramasa Y; Kanamaru M; Ide F; Kitamura K; Kashiwagi N; Sasahara N; Kitazawa S; Kitahara R
    Phys Chem Chem Phys; 2022 Aug; 24(32):19346-19353. PubMed ID: 35943083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational fluctuations and phases in fused in sarcoma (FUS) low-complexity domain.
    Thirumalai D; Kumar A; Chakraborty D; Straub JE; Mugnai ML
    Biopolymers; 2024 Mar; 115(2):e23558. PubMed ID: 37399327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using quantitative reconstitution to investigate multicomponent condensates.
    Currie SL; Rosen MK
    RNA; 2022 Jan; 28(1):27-35. PubMed ID: 34772789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid-driven condensation and interfacial ordering of FUS.
    Chatterjee S; Maltseva D; Kan Y; Hosseini E; Gonella G; Bonn M; Parekh SH
    Sci Adv; 2022 Aug; 8(31):eabm7528. PubMed ID: 35930639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The low-complexity domain of the FUS RNA binding protein self-assembles via the mutually exclusive use of two distinct cross-β cores.
    Kato M; McKnight SL
    Proc Natl Acad Sci U S A; 2021 Oct; 118(42):. PubMed ID: 34654750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.