BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 34862764)

  • 21. Three-Dimensional Bioprinting of Decellularized Extracellular Matrix-Based Bioinks for Tissue Engineering.
    Zhang CY; Fu CP; Li XY; Lu XC; Hu LG; Kankala RK; Wang SB; Chen AZ
    Molecules; 2022 May; 27(11):. PubMed ID: 35684380
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3D Bioprinting in Skeletal Muscle Tissue Engineering.
    Ostrovidov S; Salehi S; Costantini M; Suthiwanich K; Ebrahimi M; Sadeghian RB; Fujie T; Shi X; Cannata S; Gargioli C; Tamayol A; Dokmeci MR; Orive G; Swieszkowski W; Khademhosseini A
    Small; 2019 Jun; 15(24):e1805530. PubMed ID: 31012262
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy.
    Yin J; Yan M; Wang Y; Fu J; Suo H
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):6849-6857. PubMed ID: 29405059
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tunable metacrylated silk fibroin-based hybrid bioinks for the bioprinting of tissue engineering scaffolds.
    Yang J; Li Z; Li S; Zhang Q; Zhou X; He C
    Biomater Sci; 2023 Feb; 11(5):1895-1909. PubMed ID: 36722864
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development and Characterization of Complementary Polymer Network Bioinks for 3D Bioprinting of Soft Tissue Constructs.
    Song S; Li Y; Huang J; Zhang Z
    Macromol Biosci; 2022 Sep; 22(9):e2200181. PubMed ID: 35778775
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanofibrillated cellulose/gellan gum hydrogel-based bioinks for 3D bioprinting of skin cells.
    Lameirinhas NS; Teixeira MC; Carvalho JPF; Valente BFA; Pinto RJB; Oliveira H; Luís JL; Pires L; Oliveira JM; Vilela C; Freire CSR
    Int J Biol Macromol; 2023 Feb; 229():849-860. PubMed ID: 36572084
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functionalizing bioinks for 3D bioprinting applications.
    Parak A; Pradeep P; du Toit LC; Kumar P; Choonara YE; Pillay V
    Drug Discov Today; 2019 Jan; 24(1):198-205. PubMed ID: 30244080
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D printing of functional biomaterials for tissue engineering.
    Zhu W; Ma X; Gou M; Mei D; Zhang K; Chen S
    Curr Opin Biotechnol; 2016 Aug; 40():103-112. PubMed ID: 27043763
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Printability and Shape Fidelity of Bioinks in 3D Bioprinting.
    Schwab A; Levato R; D'Este M; Piluso S; Eglin D; Malda J
    Chem Rev; 2020 Oct; 120(19):11028-11055. PubMed ID: 32856892
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Peptide-dendrimer-reinforced bioinks for 3D bioprinting of heterogeneous and biomimetic in vitro models.
    Zhou K; Ding R; Tao X; Cui Y; Yang J; Mao H; Gu Z
    Acta Biomater; 2023 Oct; 169():243-255. PubMed ID: 37572980
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Human gelatin-based composite hydrogels for osteochondral tissue engineering and their adaptation into bioinks for extrusion, inkjet, and digital light processing bioprinting.
    Bedell ML; Torres AL; Hogan KJ; Wang Z; Wang B; Melchiorri AJ; Grande-Allen KJ; Mikos AG
    Biofabrication; 2022 Aug; 14(4):. PubMed ID: 35931060
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Advances in Cartilage Tissue Engineering Using Bioinks with Decellularized Cartilage and Three-Dimensional Printing.
    Stone RN; Reeck JC; Oxford JT
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982597
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanoengineered Granular Hydrogel Bioinks with Preserved Interconnected Microporosity for Extrusion Bioprinting.
    Ataie Z; Kheirabadi S; Zhang JW; Kedzierski A; Petrosky C; Jiang R; Vollberg C; Sheikhi A
    Small; 2022 Sep; 18(37):e2202390. PubMed ID: 35922399
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D bioprinting in cardiac tissue engineering.
    Wang Z; Wang L; Li T; Liu S; Guo B; Huang W; Wu Y
    Theranostics; 2021; 11(16):7948-7969. PubMed ID: 34335973
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advances on Bone Substitutes through 3D Bioprinting.
    Genova T; Roato I; Carossa M; Motta C; Cavagnetto D; Mussano F
    Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 32977633
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3D Bioprinting in Otolaryngology: A Review.
    McMillan A; McMillan N; Gupta N; Kanotra SP; Salem AK
    Adv Healthc Mater; 2023 Jul; 12(19):e2203268. PubMed ID: 36921327
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development, characterization and sterilisation of Nanocellulose-alginate-(hyaluronic acid)- bioinks and 3D bioprinted scaffolds for tissue engineering.
    Lafuente-Merchan M; Ruiz-Alonso S; Espona-Noguera A; Galvez-Martin P; López-Ruiz E; Marchal JA; López-Donaire ML; Zabala A; Ciriza J; Saenz-Del-Burgo L; Pedraz JL
    Mater Sci Eng C Mater Biol Appl; 2021 Jul; 126():112160. PubMed ID: 34082965
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterizing Bioinks for Extrusion Bioprinting: Printability and Rheology.
    O'Connell C; Ren J; Pope L; Zhang Y; Mohandas A; Blanchard R; Duchi S; Onofrillo C
    Methods Mol Biol; 2020; 2140():111-133. PubMed ID: 32207108
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent trends in 3D bioprinting technology for skeletal muscle regeneration.
    Sabetkish S; Currie P; Meagher L
    Acta Biomater; 2024 Jun; 181():46-66. PubMed ID: 38697381
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prospect and retrospect of 3D bio-printing.
    Prabhakaran P; Palaniyandi T; Kanagavalli B; Ram Kumar V; Hari R; Sandhiya V; Baskar G; Rajendran BK; Sivaji A
    Acta Histochem; 2022 Oct; 124(7):151932. PubMed ID: 36027838
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.