These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 34862818)

  • 1. Recent Advances in Design of Electrocatalysts for High-Current-Density Water Splitting.
    Luo Y; Zhang Z; Chhowalla M; Liu B
    Adv Mater; 2022 Apr; 34(16):e2108133. PubMed ID: 34862818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition metal-based catalysts for electrochemical water splitting at high current density: current status and perspectives.
    Li S; Li E; An X; Hao X; Jiang Z; Guan G
    Nanoscale; 2021 Aug; 13(30):12788-12817. PubMed ID: 34477767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amorphous Catalysts and Electrochemical Water Splitting: An Untold Story of Harmony.
    Anantharaj S; Noda S
    Small; 2020 Jan; 16(2):e1905779. PubMed ID: 31823508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strategies for Designing High-Performance Hydrogen Evolution Reaction Electrocatalysts at Large Current Densities above 1000 mA cm
    Jin M; Zhang X; Niu S; Wang Q; Huang R; Ling R; Huang J; Shi R; Amini A; Cheng C
    ACS Nano; 2022 Aug; 16(8):11577-11597. PubMed ID: 35952364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Progress in Cobalt-Based Heterogeneous Catalysts for Electrochemical Water Splitting.
    Wang J; Cui W; Liu Q; Xing Z; Asiri AM; Sun X
    Adv Mater; 2016 Jan; 28(2):215-30. PubMed ID: 26551487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Waste-Derived Catalysts for Water Electrolysis: Circular Economy-Driven Sustainable Green Hydrogen Energy.
    Chen Z; Yun S; Wu L; Zhang J; Shi X; Wei W; Liu Y; Zheng R; Han N; Ni BJ
    Nanomicro Lett; 2022 Dec; 15(1):4. PubMed ID: 36454315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasmall Ru/Cu-doped RuO
    Yang K; Xu P; Lin Z; Yang Y; Jiang P; Wang C; Liu S; Gong S; Hu L; Chen Q
    Small; 2018 Oct; 14(41):e1803009. PubMed ID: 30350553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen production from water electrolysis: role of catalysts.
    Wang S; Lu A; Zhong CJ
    Nano Converg; 2021 Feb; 8(1):4. PubMed ID: 33575919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrahigh-Current-Density and Long-Term-Durability Electrocatalysts for Water Splitting.
    Wen Q; Zhao Y; Liu Y; Li H; Zhai T
    Small; 2022 Jan; 18(4):e2104513. PubMed ID: 34605154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designing MOF Nanoarchitectures for Electrochemical Water Splitting.
    Zhang B; Zheng Y; Ma T; Yang C; Peng Y; Zhou Z; Zhou M; Li S; Wang Y; Cheng C
    Adv Mater; 2021 Apr; 33(17):e2006042. PubMed ID: 33749910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designing Self-Supported Electrocatalysts for Electrochemical Water Splitting: Surface/Interface Engineering toward Enhanced Electrocatalytic Performance.
    Wang P; Wang B
    ACS Appl Mater Interfaces; 2021 Dec; 13(50):59593-59617. PubMed ID: 34878246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic Modulation of Non-Precious-Metal Electrocatalysts for Advanced Water Splitting.
    Jiang WJ; Tang T; Zhang Y; Hu JS
    Acc Chem Res; 2020 Jun; 53(6):1111-1123. PubMed ID: 32466638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design Strategies for Large Current Density Hydrogen Evolution Reaction.
    Zhang L; Shi Z; Lin Y; Chong F; Qi Y
    Front Chem; 2022; 10():866415. PubMed ID: 35464231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density.
    Luo Y; Tang L; Khan U; Yu Q; Cheng HM; Zou X; Liu B
    Nat Commun; 2019 Jan; 10(1):269. PubMed ID: 30655511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Efficient and Robust Nickel Phosphides as Bifunctional Electrocatalysts for Overall Water-Splitting.
    Li J; Li J; Zhou X; Xia Z; Gao W; Ma Y; Qu Y
    ACS Appl Mater Interfaces; 2016 May; 8(17):10826-34. PubMed ID: 27064172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering transition metal catalysts for large-current-density water splitting.
    Yang X; Guo R; Cai R; Shi W; Liu W; Guo J; Xiao J
    Dalton Trans; 2022 Mar; 51(12):4590-4607. PubMed ID: 35231082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and Synthesis of Hollow Nanostructures for Electrochemical Water Splitting.
    Yang M; Zhang CH; Li NW; Luan D; Yu L; Lou XWD
    Adv Sci (Weinh); 2022 Mar; 9(9):e2105135. PubMed ID: 35043604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Advances Regarding Precious Metal-Based Electrocatalysts for Acidic Water Splitting.
    Peng Y; Liao Y; Ye D; Meng Z; Wang R; Zhao S; Tian T; Tang H
    Nanomaterials (Basel); 2022 Jul; 12(15):. PubMed ID: 35957050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RuNi Nanoparticles Embedded in N-Doped Carbon Nanofibers as a Robust Bifunctional Catalyst for Efficient Overall Water Splitting.
    Li M; Wang H; Zhu W; Li W; Wang C; Lu X
    Adv Sci (Weinh); 2020 Jan; 7(2):1901833. PubMed ID: 31993285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bimetallic Cu-Co-Se Nanotube Arrays Assembled on 3D Framework: an Efficient Bifunctional Electrocatalyst for Overall Water Splitting.
    Ma Z; Gu X; Liu G; Zhao Q; Li J; Wang X
    ChemSusChem; 2021 Nov; 14(22):5065-5074. PubMed ID: 34546664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.