BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 34862973)

  • 1. A cross-scale approach to unravel the molecular basis of plant phenology in temperate and tropical climates.
    Satake A; Nagahama A; Sasaki E
    New Phytol; 2022 Mar; 233(6):2340-2353. PubMed ID: 34862973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New directions in tropical phenology.
    Davis CC; Lyra GM; Park DS; Asprino R; Maruyama R; Torquato D; Cook BI; Ellison AM
    Trends Ecol Evol; 2022 Aug; 37(8):683-693. PubMed ID: 35680467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic and physiological bases for phenological responses to current and predicted climates.
    Wilczek AM; Burghardt LT; Cobb AR; Cooper MD; Welch SM; Schmitt J
    Philos Trans R Soc Lond B Biol Sci; 2010 Oct; 365(1555):3129-47. PubMed ID: 20819808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complex climate-mediated effects of urbanization on plant reproductive phenology and frost risk.
    Park DS; Xie Y; Ellison AM; Lyra GM; Davis CC
    New Phytol; 2023 Sep; 239(6):2153-2165. PubMed ID: 36942966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylogenetic conservatism and climate factors shape flowering phenology in alpine meadows.
    Li L; Li Z; Cadotte MW; Jia P; Chen G; Jin LS; Du G
    Oecologia; 2016 Oct; 182(2):419-28. PubMed ID: 27351544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beyond the usual climate? Factors determining flowering and fruiting phenology across a genus over 117 years.
    Bartlett KB; Austin MW; Beck JB; Zanne AE; Smith AB
    Am J Bot; 2023 Jul; 110(7):e16188. PubMed ID: 37200535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changing Climate Drives Divergent and Nonlinear Shifts in Flowering Phenology across Elevations.
    Rafferty NE; Diez JM; Bertelsen CD
    Curr Biol; 2020 Feb; 30(3):432-441.e3. PubMed ID: 31902725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenological responses to climate change based on a hundred years of herbarium collections of tropical Melastomataceae.
    Lima DF; Mello JHF; Lopes IT; Forzza RC; Goldenberg R; Freitas L
    PLoS One; 2021; 16(5):e0251360. PubMed ID: 33961684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Testing a growth efficiency hypothesis with continental-scale phenological variations of common and cloned plants.
    Liang L; Schwartz MD
    Int J Biometeorol; 2014 Oct; 58(8):1789-97. PubMed ID: 23775129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substantial shifts in flowering phenology of Sternbergia vernalis in the Himalaya: Supplementing decadal field records with historical and experimental evidences.
    Hassan T; Hamid M; Wani SA; Malik AH; Waza SA; Khuroo AA
    Sci Total Environ; 2021 Nov; 795():148811. PubMed ID: 34246140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Climate drives phenological reassembly of a mountain wildflower meadow community.
    Theobald EJ; Breckheimer I; HilleRisLambers J
    Ecology; 2017 Nov; 98(11):2799-2812. PubMed ID: 29023677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impacts of climate change on reproductive phenology in tropical rainforests of Southeast Asia.
    Numata S; Yamaguchi K; Shimizu M; Sakurai G; Morimoto A; Alias N; Noor Azman NZ; Hosaka T; Satake A
    Commun Biol; 2022 Apr; 5(1):311. PubMed ID: 35449443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cascading effects of climate extremes on vertebrate fauna through changes to low-latitude tree flowering and fruiting phenology.
    Butt N; Seabrook L; Maron M; Law BS; Dawson TP; Syktus J; McAlpine CA
    Glob Chang Biol; 2015 Sep; 21(9):3267-77. PubMed ID: 25605302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant phenological responses to experimental warming-A synthesis.
    Stuble KL; Bennion LD; Kuebbing SE
    Glob Chang Biol; 2021 Sep; 27(17):4110-4124. PubMed ID: 33993588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From observations to experiments in phenology research: investigating climate change impacts on trees and shrubs using dormant twigs.
    Primack RB; Laube J; Gallinat AS; Menzel A
    Ann Bot; 2015 Nov; 116(6):889-97. PubMed ID: 25851135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear flowering responses to climate: are species approaching their limits of phenological change?
    Iler AM; Høye TT; Inouye DW; Schmidt NM
    Philos Trans R Soc Lond B Biol Sci; 2013 Aug; 368(1624):20120489. PubMed ID: 23836793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diversity of flowering and fruiting phenology of trees in a tropical deciduous forest in India.
    Singh KP; Kushwaha CP
    Ann Bot; 2006 Feb; 97(2):265-76. PubMed ID: 16357055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The transcriptional changes underlying the flowering phenology shift of Arabidopsis halleri in response to climate warming.
    Komoto H; Nagahama A; Miyawaki-Kuwakado A; Hata Y; Kyozuka J; Kajita Y; Toyama H; Satake A
    Plant Cell Environ; 2024 Jan; 47(1):174-186. PubMed ID: 37691326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Snow melt timing acts independently and in conjunction with temperature accumulation to drive subalpine plant phenology.
    Jerome DK; Petry WK; Mooney KA; Iler AM
    Glob Chang Biol; 2021 Oct; 27(20):5054-5069. PubMed ID: 34265142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phylogenetic conservation in plant phenological traits varies between temperate and subtropical climates in China.
    Shahzad K; Zhu M; Cao L; Hao Y; Zhou Y; Liu W; Dai J
    Front Plant Sci; 2024; 15():1367152. PubMed ID: 38660448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.