BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 34862973)

  • 21. Spring understory herbs flower later in intensively managed forests.
    Willems FM; Scheepens JF; Ammer C; Block S; Bucharova A; Schall P; Sehrt M; Bossdorf O
    Ecol Appl; 2021 Jul; 31(5):e02332. PubMed ID: 33765327
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A natural heating experiment: Phenotypic and genotypic responses of plant phenology to geothermal soil warming.
    Valdés A; Marteinsdóttir B; Ehrlén J
    Glob Chang Biol; 2019 Mar; 25(3):954-962. PubMed ID: 30430704
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Temperate flowering phenology.
    Tooke F; Battey NH
    J Exp Bot; 2010 Jun; 61(11):2853-62. PubMed ID: 20576790
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plant phenology and global climate change: Current progresses and challenges.
    Piao S; Liu Q; Chen A; Janssens IA; Fu Y; Dai J; Liu L; Lian X; Shen M; Zhu X
    Glob Chang Biol; 2019 Jun; 25(6):1922-1940. PubMed ID: 30884039
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Forest understorey flowering phenology responses to experimental warming and illumination.
    Lorer E; Verheyen K; Blondeel H; De Pauw K; Sanczuk P; De Frenne P; Landuyt D
    New Phytol; 2024 Feb; 241(4):1476-1491. PubMed ID: 38031641
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spring- and fall-flowering species show diverging phenological responses to climate in the Southeast USA.
    Pearson KD
    Int J Biometeorol; 2019 Apr; 63(4):481-492. PubMed ID: 30734127
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automated data-intensive forecasting of plant phenology throughout the United States.
    Taylor SD; White EP
    Ecol Appl; 2020 Jan; 30(1):e02025. PubMed ID: 31630468
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Temperature alone does not explain phenological variation of diverse temperate plants under experimental warming.
    Marchin RM; Salk CF; Hoffmann WA; Dunn RR
    Glob Chang Biol; 2015 Aug; 21(8):3138-51. PubMed ID: 25736981
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatio-temporal effects of climate change on the geographical distribution and flowering phenology of hummingbird-pollinated plants.
    Correa-Lima APA; Varassin IG; Barve N; Zwiener VP
    Ann Bot; 2019 Oct; 124(3):389-398. PubMed ID: 31310652
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional traits influence patterns in vegetative and reproductive plant phenology - a multi-botanical garden study.
    Sporbert M; Jakubka D; Bucher SF; Hensen I; Freiberg M; Heubach K; König A; Nordt B; Plos C; Blinova I; Bonn A; Knickmann B; Koubek T; Linstädter A; Mašková T; Primack RB; Rosche C; Shah MA; Stevens AD; Tielbörger K; Träger S; Wirth C; Römermann C
    New Phytol; 2022 Sep; 235(6):2199-2210. PubMed ID: 35762815
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Independent effects of warming and nitrogen addition on plant phenology in the Inner Mongolian steppe.
    Xia J; Wan S
    Ann Bot; 2013 Jun; 111(6):1207-17. PubMed ID: 23585496
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Increased variance in temperature and lag effects alter phenological responses to rapid warming in a subarctic plant community.
    Mulder CP; Iles DT; Rockwell RF
    Glob Chang Biol; 2017 Feb; 23(2):801-814. PubMed ID: 27273120
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of drought on grassland phenology depend on functional types.
    Castillioni K; Newman GS; Souza L; Iler AM
    New Phytol; 2022 Nov; 236(4):1558-1571. PubMed ID: 36068954
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Forecasting flowering phenology under climate warming by modelling the regulatory dynamics of flowering-time genes.
    Satake A; Kawagoe T; Saburi Y; Chiba Y; Sakurai G; Kudoh H
    Nat Commun; 2013; 4():2303. PubMed ID: 23941973
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Micro-climatic controls and warming effects on flowering time in alpine snowbeds.
    Carbognani M; Bernareggi G; Perucco F; Tomaselli M; Petraglia A
    Oecologia; 2016 Oct; 182(2):573-85. PubMed ID: 27299914
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reproductive phenology of coastal plain Atlantic forest vegetation: comparisons from seashore to foothills.
    Staggemeier VG; Morellato LP
    Int J Biometeorol; 2011 Nov; 55(6):843-54. PubMed ID: 21826463
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Incorporating plant phenological responses into species distribution models reduces estimates of future species loss and turnover.
    Peng S; Ramirez-Parada TH; Mazer SJ; Record S; Park I; Ellison AM; Davis CC
    New Phytol; 2024 Jun; 242(5):2338-2352. PubMed ID: 38531810
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flowering phenology shifts in response to biodiversity loss.
    Wolf AA; Zavaleta ES; Selmants PC
    Proc Natl Acad Sci U S A; 2017 Mar; 114(13):3463-3468. PubMed ID: 28289231
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: an overview.
    Kramer K; Leinonen I; Loustau D
    Int J Biometeorol; 2000 Aug; 44(2):67-75. PubMed ID: 10993560
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detrending phenological time series improves climate-phenology analyses and reveals evidence of plasticity.
    Iler AM; Inouye DW; Schmidt NM; Høye TT
    Ecology; 2017 Mar; 98(3):647-655. PubMed ID: 27984645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.