These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 34863217)

  • 1. Identification of natural selection in genomic data with deep convolutional neural network.
    Nguembang Fadja A; Riguzzi F; Bertorelle G; Trucchi E
    BioData Min; 2021 Dec; 14(1):51. PubMed ID: 34863217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ImaGene: a convolutional neural network to quantify natural selection from genomic data.
    Torada L; Lorenzon L; Beddis A; Isildak U; Pattini L; Mathieson S; Fumagalli M
    BMC Bioinformatics; 2019 Nov; 20(Suppl 9):337. PubMed ID: 31757205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interpreting generative adversarial networks to infer natural selection from genetic data.
    Riley R; Mathieson I; Mathieson S
    Genetics; 2024 Apr; 226(4):. PubMed ID: 38386895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. INTERPRETING GENERATIVE ADVERSARIAL NETWORKS TO INFER NATURAL SELECTION FROM GENETIC DATA.
    Riley R; Mathieson I; Mathieson S
    bioRxiv; 2023 Jul; ():. PubMed ID: 36945387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic benchmarks: a collection of datasets for genomic sequence classification.
    Grešová K; Martinek V; Čechák D; Šimeček P; Alexiou P
    BMC Genom Data; 2023 May; 24(1):25. PubMed ID: 37127596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Intelligent Diagnosis Method of Brain MRI Tumor Segmentation Using Deep Convolutional Neural Network and SVM Algorithm.
    Wu W; Li D; Du J; Gao X; Gu W; Zhao F; Feng X; Yan H
    Comput Math Methods Med; 2020; 2020():6789306. PubMed ID: 32733596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using Local Convolutional Neural Networks for Genomic Prediction.
    Pook T; Freudenthal J; Korte A; Simianer H
    Front Genet; 2020; 11():561497. PubMed ID: 33281867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using a deep convolutional network to predict the longitudinal dispersion coefficient.
    Ghiasi B; Jodeiri A; Andik B
    J Contam Hydrol; 2021 Jun; 240():103798. PubMed ID: 33770526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. White blood cells identification system based on convolutional deep neural learning networks.
    Shahin AI; Guo Y; Amin KM; Sharawi AA
    Comput Methods Programs Biomed; 2019 Jan; 168():69-80. PubMed ID: 29173802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computationally Efficient Demographic History Inference from Allele Frequencies with Supervised Machine Learning.
    Tran LN; Sun CK; Struck TJ; Sajan M; Gutenkunst RN
    Mol Biol Evol; 2024 May; 41(5):. PubMed ID: 38636507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semi-Supervised Deep Learning Using Pseudo Labels for Hyperspectral Image Classification.
    Hao Wu ; Prasad S
    IEEE Trans Image Process; 2018 Mar; 27(3):1259-1270. PubMed ID: 29990156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting enhancers with deep convolutional neural networks.
    Min X; Zeng W; Chen S; Chen N; Chen T; Jiang R
    BMC Bioinformatics; 2017 Dec; 18(Suppl 13):478. PubMed ID: 29219068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tensor Decomposition-based Feature Extraction and Classification to Detect Natural Selection from Genomic Data.
    Amin MR; Hasan M; Arnab SP; DeGiorgio M
    Mol Biol Evol; 2023 Oct; 40(10):. PubMed ID: 37772983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Semi-supervised training of deep convolutional neural networks with heterogeneous data and few local annotations: An experiment on prostate histopathology image classification.
    Marini N; Otálora S; Müller H; Atzori M
    Med Image Anal; 2021 Oct; 73():102165. PubMed ID: 34303169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning image features with fewer labels using a semi-supervised deep convolutional network.
    Dos Santos FP; Zor C; Kittler J; Ponti MA
    Neural Netw; 2020 Dec; 132():131-143. PubMed ID: 32871338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. diploS/HIC: An Updated Approach to Classifying Selective Sweeps.
    Kern AD; Schrider DR
    G3 (Bethesda); 2018 May; 8(6):1959-1970. PubMed ID: 29626082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Timesweeper: accurately identifying selective sweeps using population genomic time series.
    Whitehouse LS; Schrider DR
    Genetics; 2023 Jul; 224(3):. PubMed ID: 37157914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sparse Convolutional Neural Networks for Genome-Wide Prediction.
    Waldmann P; Pfeiffer C; Mészáros G
    Front Genet; 2020; 11():25. PubMed ID: 32117441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A deep dive into understanding tumor foci classification using multiparametric MRI based on convolutional neural network.
    Zong W; Lee JK; Liu C; Carver EN; Feldman AM; Janic B; Elshaikh MA; Pantelic MV; Hearshen D; Chetty IJ; Movsas B; Wen N
    Med Phys; 2020 Sep; 47(9):4077-4086. PubMed ID: 32449176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images.
    Pang S; Yu Z; Orgun MA
    Comput Methods Programs Biomed; 2017 Mar; 140():283-293. PubMed ID: 28254085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.