These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 34863526)

  • 1. A high-resolution trajectory data driven method for real-time evaluation of traffic safety.
    Hu Y; Li Y; Huang H; Lee J; Yuan C; Zou G
    Accid Anal Prev; 2022 Feb; 165():106503. PubMed ID: 34863526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrated approach of machine learning and Bayesian spatial Poisson model for large-scale real-time traffic conflict prediction.
    Li D; Fu C; Sayed T; Wang W
    Accid Anal Prev; 2023 Nov; 192():107286. PubMed ID: 37690284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of explainable machine learning for real-time safety analysis toward a connected vehicle environment.
    Yuan C; Li Y; Huang H; Wang S; Sun Z; Wang H
    Accid Anal Prev; 2022 Jun; 171():106681. PubMed ID: 35468530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A conflict-based approach for real-time road safety analysis: Comparative evaluation with crash-based models.
    Orsini F; Gecchele G; Rossi R; Gastaldi M
    Accid Anal Prev; 2021 Oct; 161():106382. PubMed ID: 34479121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A study on diversion behavior in weaving segments: Individualized traffic conflict prediction and causal mechanism analysis.
    Yuan R; Abdel-Aty M; Xiang Q
    Accid Anal Prev; 2024 Sep; 205():107681. PubMed ID: 38897142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting lane change maneuvers using SHRP2 naturalistic driving data: A comparative study machine learning techniques.
    Das A; Khan MN; Ahmed MM
    Accid Anal Prev; 2020 Jul; 142():105578. PubMed ID: 32408143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting real-time traffic conflicts using deep learning.
    Formosa N; Quddus M; Ison S; Abdel-Aty M; Yuan J
    Accid Anal Prev; 2020 Mar; 136():105429. PubMed ID: 31931409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crash prediction based on traffic platoon characteristics using floating car trajectory data and the machine learning approach.
    Wang J; Luo T; Fu T
    Accid Anal Prev; 2019 Dec; 133():105320. PubMed ID: 31590095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Traffic conflict assessment using macroscopic traffic flow variables: A novel framework for real-time applications.
    Gore N; Chauhan R; Easa S; Arkatkar S
    Accid Anal Prev; 2023 Jun; 185():107020. PubMed ID: 36893670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing autonomous vehicle hyperawareness in busy traffic environments: A machine learning approach.
    Alozi AR; Hussein M
    Accid Anal Prev; 2024 Apr; 198():107458. PubMed ID: 38277854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A literature review of machine learning algorithms for crash injury severity prediction.
    Santos K; Dias JP; Amado C
    J Safety Res; 2022 Feb; 80():254-269. PubMed ID: 35249605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of traffic conflicts using precise lateral position and width of vehicles for safety assessment.
    Charly A; Mathew TV
    Accid Anal Prev; 2019 Nov; 132():105264. PubMed ID: 31450115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cycle-level traffic conflict prediction at signalized intersections with LiDAR data and Bayesian deep learning.
    Wu P; Wei W; Zheng L; Hu Z; Essa M
    Accid Anal Prev; 2023 Nov; 192():107268. PubMed ID: 37651856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning the representation of surrogate safety measures to identify traffic conflict.
    Lu J; Grembek O; Hansen M
    Accid Anal Prev; 2022 Sep; 174():106755. PubMed ID: 35714519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A proactive lane-changing risk prediction framework considering driving intention recognition and different lane-changing patterns.
    Shangguan Q; Fu T; Wang J; Fang S; Fu L
    Accid Anal Prev; 2022 Jan; 164():106500. PubMed ID: 34823098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Severity analysis of road transport accidents of hazardous materials with machine learning.
    Shen X; Wei S
    Traffic Inj Prev; 2021; 22(4):324-329. PubMed ID: 33849325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applying machine learning approaches to analyze the vulnerable road-users' crashes at statewide traffic analysis zones.
    Rahman MS; Abdel-Aty M; Hasan S; Cai Q
    J Safety Res; 2019 Sep; 70():275-288. PubMed ID: 31848006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatio-temporal dynamic change mechanism analysis of traffic conflict risk based on trajectory data.
    Hu Y; Li Y; Huang H
    Accid Anal Prev; 2023 Oct; 191():107203. PubMed ID: 37406544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iterative learning control for lane-changing trajectories upstream off-ramp bottlenecks and safety evaluation.
    Dong C; Xing L; Wang H; Yu X; Liu Y; Ni D
    Accid Anal Prev; 2023 Apr; 183():106970. PubMed ID: 36669457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Key feature selection and risk prediction for lane-changing behaviors based on vehicles' trajectory data.
    Chen T; Shi X; Wong YD
    Accid Anal Prev; 2019 Aug; 129():156-169. PubMed ID: 31150922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.