These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 3486399)
1. The vestibular stereovillus membrane: an illustration of the 'greater membrane' concept. Neugebauer DC ORL J Otorhinolaryngol Relat Spec; 1986; 48(2):87-92. PubMed ID: 3486399 [TBL] [Abstract][Full Text] [Related]
2. Chemical dissection of stereovilli from fish inner ear reveals differences from intestinal microvilli. Neugebauer DC; Thurm U J Neurocytol; 1984 Oct; 13(5):797-808. PubMed ID: 6512567 [TBL] [Abstract][Full Text] [Related]
3. Geometrical array of the vestibular sensory hair bundle. Bagger-Sjöbäck D; Takumida M Acta Otolaryngol; 1988; 106(5-6):393-403. PubMed ID: 3264654 [TBL] [Abstract][Full Text] [Related]
4. Glycocalyx and ciliary interconnections of the human vestibular end organs: an investigation by scanning electron microscopy. Takumida M; Suzuki M; Harada Y; Bagger-Sjöbäck D ORL J Otorhinolaryngol Relat Spec; 1990; 52(3):137-42. PubMed ID: 2359590 [TBL] [Abstract][Full Text] [Related]
5. Distribution of the 275 kD hair cell antigen and cell surface specialisations on auditory and vestibular hair bundles in the chicken inner ear. Goodyear R; Richardson G J Comp Neurol; 1992 Nov; 325(2):243-56. PubMed ID: 1281174 [TBL] [Abstract][Full Text] [Related]
6. Stereo-kinociliar bonds in mammalian vestibular organs. Ernstson S; Smith CA Acta Otolaryngol; 1986; 101(5-6):395-402. PubMed ID: 2425544 [TBL] [Abstract][Full Text] [Related]
7. Observation of morphological changes in the vestibular sensory epithelia. Harada Y Int J Equilib Res; 1973 Jun; 3(1):48-54. PubMed ID: 4549839 [No Abstract] [Full Text] [Related]
8. Glycocalyx and ciliary interconnections of the vestibular end organs: an investigation by high-resolution scanning electron microscopy. Takumida M ORL J Otorhinolaryngol Relat Spec; 1989; 51(3):137-43. PubMed ID: 2471950 [TBL] [Abstract][Full Text] [Related]
9. Freeze-fracturing of vestibular sensory epithelia in a strain of the waltzing guinea pig. Sobin A; Flock A; Bagger-Sjöbäck D Acta Otolaryngol; 1983; 96(3-4):207-14. PubMed ID: 6605650 [TBL] [Abstract][Full Text] [Related]
10. A morphological study on vestibular sensory epithelia in a strain of the waltzing guinea pig. Sobin A; Weraäll J Acta Otolaryngol Suppl; 1983; 396():1-32. PubMed ID: 6314733 [TBL] [Abstract][Full Text] [Related]
12. Scanning electron microscopic observations of the canine inner ear. Mount RJ; Harrison RV Scanning Microsc; 1987 Sep; 1(3):1167-74. PubMed ID: 3498984 [TBL] [Abstract][Full Text] [Related]
13. Cupula-receptor cell relationships with evidence provided by SEM microdissection. Barber VC; Emerson CJ Scan Electron Microsc; 1979; (3):939-48. PubMed ID: 392733 [TBL] [Abstract][Full Text] [Related]
14. The glycocalyx and stereociliary interconnections of the vestibular sensory epithelia of the guinea pig. A freeze-fracture, low-voltage cryo-SEM, SEM and TEM study. Valk WL; Oei ML; Segenhout JM; Dijk F; Stokroos I; Albers FW ORL J Otorhinolaryngol Relat Spec; 2002; 64(4):242-6. PubMed ID: 12232468 [TBL] [Abstract][Full Text] [Related]
15. Organization and density of microtubules in the vestibular sensory cells in the cat. Favre D; Sans A Acta Otolaryngol; 1983; 96(1-2):15-20. PubMed ID: 6604391 [TBL] [Abstract][Full Text] [Related]
16. Gap junctional connections between hair cells, supporting cells and nerves in a vestibular organ. Mulroy MJ; Dempewolf SA; Curtis S; Iida HC Hear Res; 1993 Dec; 71(1-2):98-105. PubMed ID: 8113149 [TBL] [Abstract][Full Text] [Related]
17. Sensory and nonsensory ciliated cells in the ear of the sea lamprey, Petromyzon marinus. Popper AN; Hoxter B Brain Behav Evol; 1987; 30(1-2):43-61. PubMed ID: 2887234 [TBL] [Abstract][Full Text] [Related]
18. Fine structure of guinea pig vestibular kinocilium. Kikuchi T; Takasaka T; Tonosaki A; Watanabe H Acta Otolaryngol; 1989; 108(1-2):26-30. PubMed ID: 2527457 [TBL] [Abstract][Full Text] [Related]
19. The inner ear of the echidna Tachyglossus aculeatus: the vestibular sensory organs. Jørgensen JM; Locket NA Proc Biol Sci; 1995 May; 260(1358):183-9. PubMed ID: 7784438 [TBL] [Abstract][Full Text] [Related]
20. [Development of the internal ear during the 1st trimester of pregnancy. Differentiation of the sensory cells and formation of the 1st synapses]. Lavigne-Rebillard M; Dechesne C; Pujol R; Sans A; Escudero P Ann Otolaryngol Chir Cervicofac; 1985; 102(7):493-8. PubMed ID: 3879139 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]