BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 34864043)

  • 1. Extracting BOLD signals based on time-constrained multiset canonical correlation analysis for brain functional network estimation and classification.
    Wang H; Jiang X; De Leone R; Zhang Y; Qiao L; Zhang L
    Brain Res; 2022 Jan; 1775():147745. PubMed ID: 34864043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional connectivity analysis of fMRI data based on regularized multiset canonical correlation analysis.
    Deleus F; Van Hulle MM
    J Neurosci Methods; 2011 Apr; 197(1):143-57. PubMed ID: 21277327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Autism Subtypes Based on Wavelet Coherence of BOLD FMRI Signals Using Convolutional Neural Network.
    Al-Hiyali MI; Yahya N; Faye I; Hussein AF
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extraction of dynamic functional connectivity from brain grey matter and white matter for MCI classification.
    Chen X; Zhang H; Zhang L; Shen C; Lee SW; Shen D
    Hum Brain Mapp; 2017 Oct; 38(10):5019-5034. PubMed ID: 28665045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating sparse functional brain networks with spatial constraints for MCI identification.
    Xue Y; Zhang L; Qiao L; Shen D
    PLoS One; 2020; 15(7):e0235039. PubMed ID: 32707574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analyzing the connectivity between regions of interest: an approach based on cluster Granger causality for fMRI data analysis.
    Sato JR; Fujita A; Cardoso EF; Thomaz CE; Brammer MJ; Amaro E
    Neuroimage; 2010 Oct; 52(4):1444-55. PubMed ID: 20472076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning Brain Functional Networks With Latent Temporal Dependency for MCI Identification.
    Xue Y; Zhang Y; Zhang L; Lee SW; Qiao L; Shen D
    IEEE Trans Biomed Eng; 2022 Feb; 69(2):590-601. PubMed ID: 34347591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A robust DWT-CNN-based CAD system for early diagnosis of autism using task-based fMRI.
    Haweel R; Shalaby A; Mahmoud A; Seada N; Ghoniemy S; Ghazal M; Casanova MF; Barnes GN; El-Baz A
    Med Phys; 2021 May; 48(5):2315-2326. PubMed ID: 33378589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating Brain Functional Networks Based on Adaptively-Weighted fMRI Signals for MCI Identification.
    Chen H; Zhang Y; Zhang L; Qiao L; Shen D
    Front Aging Neurosci; 2020; 12():595322. PubMed ID: 33584242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resting-state multi-spectrum functional connectivity networks for identification of MCI patients.
    Wee CY; Yap PT; Denny K; Browndyke JN; Potter GG; Welsh-Bohmer KA; Wang L; Shen D
    PLoS One; 2012; 7(5):e37828. PubMed ID: 22666397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling regional dynamics in low-frequency fluctuation and its application to Autism spectrum disorder diagnosis.
    Jun E; Kang E; Choi J; Suk HI
    Neuroimage; 2019 Jan; 184():669-686. PubMed ID: 30248456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fusion of ULS Group Constrained High- and Low-Order Sparse Functional Connectivity Networks for MCI Classification.
    Li Y; Liu J; Peng Z; Sheng C; Kim M; Yap PT; Wee CY; Shen D
    Neuroinformatics; 2020 Jan; 18(1):1-24. PubMed ID: 30982183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-Class ASD Classification Based on Functional Connectivity and Functional Correlation Tensor via Multi-Source Domain Adaptation and Multi-View Sparse Representation.
    Wang J; Zhang L; Wang Q; Chen L; Shi J; Chen X; Li Z; Shen D
    IEEE Trans Med Imaging; 2020 Oct; 39(10):3137-3147. PubMed ID: 32305905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrinsic frequency specific brain networks for identification of MCI individuals using resting-state fMRI.
    Qian L; Zheng L; Shang Y; Zhang Y; Zhang Y;
    Neurosci Lett; 2018 Jan; 664():7-14. PubMed ID: 29107088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multimodal hyper-connectivity of functional networks using functionally-weighted LASSO for MCI classification.
    Li Y; Liu J; Gao X; Jie B; Kim M; Yap PT; Wee CY; Shen D
    Med Image Anal; 2019 Feb; 52():80-96. PubMed ID: 30472348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal fractal analysis of the rs-BOLD signal identifies brain abnormalities in autism spectrum disorder.
    Dona O; Hall GB; Noseworthy MD
    PLoS One; 2017; 12(12):e0190081. PubMed ID: 29272297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A unified framework for personalized regions selection and functional relation modeling for early MCI identification.
    Lee J; Ko W; Kang E; Suk HI;
    Neuroimage; 2021 Aug; 236():118048. PubMed ID: 33878379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating functional brain networks by incorporating a modularity prior.
    Qiao L; Zhang H; Kim M; Teng S; Zhang L; Shen D
    Neuroimage; 2016 Nov; 141():399-407. PubMed ID: 27485752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inter-Network High-Order Functional Connectivity (IN-HOFC) and its Alteration in Patients with Mild Cognitive Impairment.
    Zhang H; Giannakopoulos P; Haller S; Lee SW; Qiu S; Shen D
    Neuroinformatics; 2019 Oct; 17(4):547-561. PubMed ID: 30739281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. "Unrest while Resting"? Brain entropy in autism spectrum disorder.
    Maximo JO; Nelson CM; Kana RK
    Brain Res; 2021 Jul; 1762():147435. PubMed ID: 33753068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.