These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 34864214)
21. Breaking down lignin to high-value chemicals: the conversion of lignocellulose to vanillin in a gene deletion mutant of Rhodococcus jostii RHA1. Sainsbury PD; Hardiman EM; Ahmad M; Otani H; Seghezzi N; Eltis LD; Bugg TD ACS Chem Biol; 2013 Oct; 8(10):2151-6. PubMed ID: 23898824 [TBL] [Abstract][Full Text] [Related]
22. Trends in valorization of highly-toxic lignocellulosic biomass derived-compounds via engineered microbes. Jayakody LN; Chinmoy B; Turner TL Bioresour Technol; 2022 Feb; 346():126614. PubMed ID: 34954359 [TBL] [Abstract][Full Text] [Related]
23. Biobased PET from lignin using an engineered cis, cis-muconate-producing Pseudomonas putida strain with superior robustness, energy and redox properties. Kohlstedt M; Weimer A; Weiland F; Stolzenberger J; Selzer M; Sanz M; Kramps L; Wittmann C Metab Eng; 2022 Jul; 72():337-352. PubMed ID: 35545205 [TBL] [Abstract][Full Text] [Related]
24. iNovo479: Metabolic Modeling Provides a Roadmap to Optimize Bioproduct Yield from Deconstructed Lignin Aromatics by Linz AM; Ma Y; Scholz S; Noguera DR; Donohue TJ Metabolites; 2022 Apr; 12(4):. PubMed ID: 35448553 [TBL] [Abstract][Full Text] [Related]
25. Synthetic metabolic pathway for the production of 1-alkenes from lignin-derived molecules. Luo J; Lehtinen T; Efimova E; Santala V; Santala S Microb Cell Fact; 2019 Mar; 18(1):48. PubMed ID: 30857542 [TBL] [Abstract][Full Text] [Related]
26. Redundancy in aromatic O-demethylation and ring opening reactions in Perez JM; Kontur WS; Gehl C; Gille DM; Ma Y; Niles AV; Umana G; Donohue TJ; Noguera DR Appl Environ Microbiol; 2021 Apr; 87(8):. PubMed ID: 33579679 [TBL] [Abstract][Full Text] [Related]
27. Direct biosynthesis of adipic acid from lignin-derived aromatics using engineered Pseudomonas putida KT2440. Niu W; Willett H; Mueller J; He X; Kramer L; Ma B; Guo J Metab Eng; 2020 May; 59():151-161. PubMed ID: 32130971 [TBL] [Abstract][Full Text] [Related]
28. Opportunities and challenges in biological lignin valorization. Beckham GT; Johnson CW; Karp EM; Salvachúa D; Vardon DR Curr Opin Biotechnol; 2016 Dec; 42():40-53. PubMed ID: 26974563 [TBL] [Abstract][Full Text] [Related]
29. Aromatic metabolism of filamentous fungi in relation to the presence of aromatic compounds in plant biomass. Mäkelä MR; Marinović M; Nousiainen P; Liwanag AJ; Benoit I; Sipilä J; Hatakka A; de Vries RP; Hildén KS Adv Appl Microbiol; 2015; 91():63-137. PubMed ID: 25911233 [TBL] [Abstract][Full Text] [Related]
31. Toward engineering Wu W; Liu F; Singh S Proc Natl Acad Sci U S A; 2018 Mar; 115(12):2970-2975. PubMed ID: 29500185 [TBL] [Abstract][Full Text] [Related]
32. Computationally Prospecting Potential Pathways from Lignin Monomers and Dimers toward Aromatic Compounds. Wang L; Maranas CD ACS Synth Biol; 2021 May; 10(5):1064-1076. PubMed ID: 33877818 [TBL] [Abstract][Full Text] [Related]
33. Unleashing the capacity of Rhodococcus for converting lignin into lipids. Zhao ZM; Liu ZH; Zhang T; Meng R; Gong Z; Li Y; Hu J; Ragauskas AJ; Li BZ; Yuan YJ Biotechnol Adv; 2024; 70():108274. PubMed ID: 37913947 [TBL] [Abstract][Full Text] [Related]
34. Outer membrane vesicles catabolize lignin-derived aromatic compounds in Salvachúa D; Werner AZ; Pardo I; Michalska M; Black BA; Donohoe BS; Haugen SJ; Katahira R; Notonier S; Ramirez KJ; Amore A; Purvine SO; Zink EM; Abraham PE; Giannone RJ; Poudel S; Laible PD; Hettich RL; Beckham GT Proc Natl Acad Sci U S A; 2020 Apr; 117(17):9302-9310. PubMed ID: 32245809 [TBL] [Abstract][Full Text] [Related]
35. Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity. Johnson CW; Salvachúa D; Khanna P; Smith H; Peterson DJ; Beckham GT Metab Eng Commun; 2016 Dec; 3():111-119. PubMed ID: 29468118 [TBL] [Abstract][Full Text] [Related]
36. Bioconversion of lignin-derived aromatics into the building block pyridine 2,4-dicarboxylic acid by engineering recombinant Pseudomonas putida strains. Gómez-Álvarez H; Iturbe P; Rivero-Buceta V; Mines P; Bugg TDH; Nogales J; Díaz E Bioresour Technol; 2022 Feb; 346():126638. PubMed ID: 34971782 [TBL] [Abstract][Full Text] [Related]
37. Engineering Pseudomonas putida for improved utilization of syringyl aromatics. Mueller J; Willett H; Feist AM; Niu W Biotechnol Bioeng; 2022 Sep; 119(9):2541-2550. PubMed ID: 35524438 [TBL] [Abstract][Full Text] [Related]
38. Pseudomonas sp. NGC7 as a microbial chassis for glucose-free muconate production from a variety of lignin-derived aromatics and its application to the production from sugar cane bagasse alkaline extract. Akutsu M; Abe N; Sakamoto C; Kurimoto Y; Sugita H; Tanaka M; Higuchi Y; Sakamoto K; Kamimura N; Kurihara H; Masai E; Sonoki T Bioresour Technol; 2022 Sep; 359():127479. PubMed ID: 35714780 [TBL] [Abstract][Full Text] [Related]
39. Vanillin Production in García-Hidalgo J; Brink DP; Ravi K; Paul CJ; Lidén G; Gorwa-Grauslund MF Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31924622 [TBL] [Abstract][Full Text] [Related]
40. Direct catalytic oxidation of rice husk lignin with hydroxide nanorod-modified copper foam and muconate production by engineered Pseudomonas sp. NGC7. Yoshida A; Kurnia I; Higuchi Y; Osaka Y; Yasuta C; Sakamoto C; Tamura M; Takamatsu T; Kamimura N; Masai E; Sonoki T J Biosci Bioeng; 2024 Nov; 138(5):431-438. PubMed ID: 39191570 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]