These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 34864214)
61. Depolymerization and conversion of lignin to value-added bioproducts by microbial and enzymatic catalysis. Weng C; Peng X; Han Y Biotechnol Biofuels; 2021 Apr; 14(1):84. PubMed ID: 33812391 [TBL] [Abstract][Full Text] [Related]
62. Engineered Pseudomonas putida simultaneously catabolizes five major components of corn stover lignocellulose: Glucose, xylose, arabinose, p-coumaric acid, and acetic acid. Elmore JR; Dexter GN; Salvachúa D; O'Brien M; Klingeman DM; Gorday K; Michener JK; Peterson DJ; Beckham GT; Guss AM Metab Eng; 2020 Nov; 62():62-71. PubMed ID: 32828991 [TBL] [Abstract][Full Text] [Related]
63. Feedstock variability impacts the bioconversion of sugar and lignin streams derived from corn stover by Clostridium tyrobutyricum and engineered Pseudomonas putida. Ruhl IA; Nelson RS; Katahira R; Kruger JS; Chen X; Haugen SJ; Ingraham MA; Woodworth SP; Alt H; Ramirez KJ; Peterson DJ; Ding L; Laible PD; Linger JG; Salvachúa D Microb Biotechnol; 2024 Sep; 17(9):e70006. PubMed ID: 39235453 [TBL] [Abstract][Full Text] [Related]
64. Characterization of aromatic acid/proton symporters in Pseudomonas putida KT2440 toward efficient microbial conversion of lignin-related aromatics. Wada A; Prates ÉT; Hirano R; Werner AZ; Kamimura N; Jacobson DA; Beckham GT; Masai E Metab Eng; 2021 Mar; 64():167-179. PubMed ID: 33549838 [TBL] [Abstract][Full Text] [Related]
65. The chemical logic of enzymatic lignin degradation. Bugg TDH Chem Commun (Camb); 2024 Jan; 60(7):804-814. PubMed ID: 38165282 [TBL] [Abstract][Full Text] [Related]
66. Genomic analysis of Morya R; Kumar M; Singh SS; Thakur IS Biotechnol Biofuels; 2019; 12():277. PubMed ID: 31788027 [TBL] [Abstract][Full Text] [Related]
67. Bacterial Transformation of Aromatic Monomers in Softwood Black Liquor. Navas LE; Dexter G; Liu J; Levy-Booth D; Cho M; Jang SK; Mansfield SD; Renneckar S; Mohn WW; Eltis LD Front Microbiol; 2021; 12():735000. PubMed ID: 34566938 [TBL] [Abstract][Full Text] [Related]
71. Lignins of bioenergy crops: a review? Guragain YN; Herrera AI; Vadlani PV; Prakash O Nat Prod Commun; 2015 Jan; 10(1):201-8. PubMed ID: 25920245 [TBL] [Abstract][Full Text] [Related]
72. Biofuels and bio-based chemicals from lignocellulose: metabolic engineering strategies in strain development. Chen R; Dou J Biotechnol Lett; 2016 Feb; 38(2):213-21. PubMed ID: 26466596 [TBL] [Abstract][Full Text] [Related]
73. Expression of a bacterial 3-dehydroshikimate dehydratase (QsuB) reduces lignin and improves biomass saccharification efficiency in switchgrass (Panicum virgatum L.). Hao Z; Yogiswara S; Wei T; Benites VT; Sinha A; Wang G; Baidoo EEK; Ronald PC; Scheller HV; Loqué D; Eudes A BMC Plant Biol; 2021 Jan; 21(1):56. PubMed ID: 33478381 [TBL] [Abstract][Full Text] [Related]
74. Direct production of commodity chemicals from lignocellulose using Myceliophthora thermophila. Li J; Lin L; Sun T; Xu J; Ji J; Liu Q; Tian C Metab Eng; 2020 Sep; 61():416-426. PubMed ID: 31078793 [TBL] [Abstract][Full Text] [Related]
75. Bacterial valorization of pulp and paper industry process streams and waste. Brown DM; Pawlak J; Grunden AM Appl Microbiol Biotechnol; 2021 Feb; 105(4):1345-1363. PubMed ID: 33481067 [TBL] [Abstract][Full Text] [Related]