These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34864513)

  • 1. Temperature-buffering by oyster habitat provides temporal stability for rocky shore communities.
    McAfee D; Bishop MJ; Williams GA
    Mar Environ Res; 2022 Jan; 173():105536. PubMed ID: 34864513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Latitudinal gradients in ecosystem engineering by oysters vary across habitats.
    McAfee D; Cole VJ; Bishop MJ
    Ecology; 2016 Apr; 97(4):929-39. PubMed ID: 27220209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast-growing oysters show reduced capacity to provide a thermal refuge to intertidal biodiversity at high temperatures.
    McAfee D; O'Connor WA; Bishop MJ
    J Anim Ecol; 2017 Oct; 86(6):1352-1362. PubMed ID: 28913869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanisms by which oysters facilitate invertebrates vary across environmental gradients.
    McAfee D; Bishop MJ
    Oecologia; 2019 Apr; 189(4):1095-1106. PubMed ID: 30826868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A verified habitat suitability model for the intertidal rock oyster, Saccostrea cucullata.
    Chowdhury MSN; Wijsman JWM; Hossain MS; Ysebaert T; Smaal AC
    PLoS One; 2019; 14(6):e0217688. PubMed ID: 31185014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Timing Metabolic Depression: Predicting Thermal Stress in Extreme Intertidal Environments.
    Hui TY; Dong YW; Han GD; Lau SLY; Cheng MCF; Meepoka C; Ganmanee M; Williams GA
    Am Nat; 2020 Oct; 196(4):501-511. PubMed ID: 32970470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cool microrefugia accumulate and conserve biodiversity under climate change.
    Nadeau CP; Giacomazzo A; Urban MC
    Glob Chang Biol; 2022 May; 28(10):3222-3235. PubMed ID: 35226784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seasonal variation in utilization of biogenic microhabitats by littorinid snails on tropical rocky shores.
    Cartwright SR; Williams GA
    Mar Biol; 2012; 159(10):2323-2332. PubMed ID: 24391279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical effects of habitat-forming species override latitudinal trends in temperature.
    Jurgens LJ; Gaylord B
    Ecol Lett; 2018 Feb; 21(2):190-196. PubMed ID: 29164789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Habitat associations of species show consistent but weak responses to climate.
    Suggitt AJ; Stefanescu C; Páramo F; Oliver T; Anderson BJ; Hill JK; Roy DB; Brereton T; Thomas CD
    Biol Lett; 2012 Aug; 8(4):590-3. PubMed ID: 22491762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The importance of thermal history: costs and benefits of heat exposure in a tropical, rocky shore oyster.
    Giomi F; Mandaglio C; Ganmanee M; Han GD; Dong YW; Williams GA; Sarà G
    J Exp Biol; 2016 Mar; 219(Pt 5):686-94. PubMed ID: 26747904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting the impact of sea-level rise on intertidal rocky shores with remote sensing.
    Schaefer N; Mayer-Pinto M; Griffin KJ; Johnston EL; Glamore W; Dafforn KA
    J Environ Manage; 2020 May; 261():110203. PubMed ID: 32148273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Habitat-associations of turban snails on intertidal and subtidal rocky reefs.
    Smoothey AF
    PLoS One; 2013; 8(5):e61257. PubMed ID: 23675409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conservation of thermal physiology in tropical intertidal snails following an evolutionary transition to a cooler ecosystem: climate change implications.
    Marshall DJ; Mustapha N; Monaco CJ
    Conserv Physiol; 2023; 11(1):coad056. PubMed ID: 37533818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Habitat benefits of restored oyster reefs and aquaculture to fish and invertebrates in a coastal pond in Rhode Island, US.
    Ayvazian S; Gerber-Williams A; Grabbert S; Miller K; Hancock B; Helt W; Cobb D; Strobel C
    J Shellfish Res; 2020 Dec; 39(3):563-587. PubMed ID: 33551544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facilitation alters climate change risk on rocky shores.
    Jurgens LJ; Ashlock LW; Gaylord B
    Ecology; 2022 Feb; 103(2):e03596. PubMed ID: 34813668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visitor impact on rocky shore communities of Qeshm Island, the Persian Gulf, Iran.
    Pour FA; Shokri MR; Abtahi B
    Environ Monit Assess; 2013 Feb; 185(2):1859-71. PubMed ID: 22580792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Why are 'suboptimal' temperatures preferred in a tropical intertidal ectotherm?
    Hui TY; Crickenberger S; Lau JWT; Williams GA
    J Anim Ecol; 2022 Jul; 91(7):1400-1415. PubMed ID: 35302242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resistance of an intertidal oyster(Saccostrea mordax)to marine heatwaves and the implication for reef building.
    Guo S; Li J; Yang X; Qin Y; Zhao Y; Wei J; Ma H; Yu Z; Zhao L; Zhang Y
    Sci Total Environ; 2024 Jun; 928():172474. PubMed ID: 38621527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal tolerance, safety margins and vulnerability of coastal species: Projected impact of climate change induced cold water variability in a temperate African region.
    van der Walt KA; Porri F; Potts WM; Duncan MI; James NC
    Mar Environ Res; 2021 Jul; 169():105346. PubMed ID: 33971581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.