These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 34864551)

  • 21. Theophylline-based control of repA on a Clostridioides difficile plasmid for use in allelic exchange.
    Brehm JN; Sorg JA
    Anaerobe; 2024 Aug; 88():102858. PubMed ID: 38692475
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The WalRK Two-Component System Is Essential for Proper Cell Envelope Biogenesis in Clostridioides difficile.
    Müh U; Ellermeier CD; Weiss DS
    J Bacteriol; 2022 Jun; 204(6):e0012122. PubMed ID: 35575581
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Revised Understanding of Clostridioides difficile Spore Germination.
    Lawler AJ; Lambert PA; Worthington T
    Trends Microbiol; 2020 Sep; 28(9):744-752. PubMed ID: 32781028
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activation of the extracytoplasmic function σ factor σ
    Ho TD; Ellermeier CD
    Curr Opin Microbiol; 2022 Feb; 65():162-166. PubMed ID: 34894542
    [TBL] [Abstract][Full Text] [Related]  

  • 25.
    Shen A
    Annu Rev Microbiol; 2020 Sep; 74():545-566. PubMed ID: 32905755
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Putative Conjugative Plasmids with tcdB and cdtAB Genes in Clostridioides difficile.
    Ramírez-Vargas G; Rodríguez C
    Emerg Infect Dis; 2020 Sep; 26(9):2287-2290. PubMed ID: 32818425
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crosstalk between (p)ppGpp and other nucleotide second messengers.
    Fung DK; Trinquier AE; Wang JD
    Curr Opin Microbiol; 2023 Dec; 76():102398. PubMed ID: 37866203
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Clostridioides difficile exploits toxin-mediated inflammation to alter the host nutritional landscape and exclude competitors from the gut microbiota.
    Fletcher JR; Pike CM; Parsons RJ; Rivera AJ; Foley MH; McLaren MR; Montgomery SA; Theriot CM
    Nat Commun; 2021 Jan; 12(1):462. PubMed ID: 33469019
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cyclic-di-GMP signaling in the Gram-positive pathogen Clostridium difficile.
    Bordeleau E; Burrus V
    Curr Genet; 2015 Nov; 61(4):497-502. PubMed ID: 25800812
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Clostridioides difficile peptidoglycan modifications.
    Coullon H; Candela T
    Curr Opin Microbiol; 2022 Feb; 65():156-161. PubMed ID: 34883390
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of novel, cryptic
    Williamson CHD; Stone NE; Nunnally AE; Roe CC; Vazquez AJ; Lucero SA; Hornstra H; Wagner DM; Keim P; Rupnik M; Janezic S; Sahl JW
    Microb Genom; 2022 Feb; 8(2):. PubMed ID: 35166655
    [No Abstract]   [Full Text] [Related]  

  • 32. Evaluation of functionality of type II toxin-antitoxin systems of Clostridioides difficile R20291.
    Álvarez R; Ortega-Fuentes C; Queraltó C; Inostroza O; Díaz-Yáñez F; González R; Calderón IL; Fuentes JA; Paredes-Sabja D; Gil F
    Microbiol Res; 2020 Oct; 239():126539. PubMed ID: 32622285
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physiological role and complex regulation of O
    Caulat LC; Lotoux A; Martins MC; Kint N; Anjou C; Teixeira M; Folgosa F; Morvan C; Martin-Verstraete I
    mBio; 2024 Oct; 15(10):e0159124. PubMed ID: 39189748
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential effects of 'resurrecting' Csp pseudoproteases during Clostridioides difficile spore germination.
    Donnelly ML; Forster ER; Rohlfing AE; Shen A
    Biochem J; 2020 Apr; 477(8):1459-1478. PubMed ID: 32242623
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An allosteric self-splicing ribozyme triggered by a bacterial second messenger.
    Lee ER; Baker JL; Weinberg Z; Sudarsan N; Breaker RR
    Science; 2010 Aug; 329(5993):845-848. PubMed ID: 20705859
    [TBL] [Abstract][Full Text] [Related]  

  • 36. How the Anaerobic Enteropathogen
    Kint N; Alves Feliciano C; Martins MC; Morvan C; Fernandes SF; Folgosa F; Dupuy B; Texeira M; Martin-Verstraete I
    mBio; 2020 Sep; 11(5):. PubMed ID: 32900801
    [No Abstract]   [Full Text] [Related]  

  • 37. Ebselen Not Only Inhibits Clostridioides difficile Toxins but Displays Redox-Associated Cellular Killing.
    Marreddy RKR; Olaitan AO; May JN; Dong M; Hurdle JG
    Microbiol Spectr; 2021 Oct; 9(2):e0044821. PubMed ID: 34468187
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Xylose-Inducible Expression System and a CRISPR Interference Plasmid for Targeted Knockdown of Gene Expression in Clostridioides difficile.
    Müh U; Pannullo AG; Weiss DS; Ellermeier CD
    J Bacteriol; 2019 Jul; 201(14):. PubMed ID: 30745377
    [TBL] [Abstract][Full Text] [Related]  

  • 39. c-di-GMP turn-over in Clostridium difficile is controlled by a plethora of diguanylate cyclases and phosphodiesterases.
    Bordeleau E; Fortier LC; Malouin F; Burrus V
    PLoS Genet; 2011 Mar; 7(3):e1002039. PubMed ID: 21483756
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Factors and Conditions That Impact Electroporation of Clostridioides difficile Strains.
    Bhattacharjee D; Sorg JA
    mSphere; 2020 Mar; 5(2):. PubMed ID: 32132157
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.