BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 34864823)

  • 1. Differentiation therapy for myeloid malignancies: beyond cytotoxicity.
    Stubbins RJ; Karsan A
    Blood Cancer J; 2021 Dec; 11(12):193. PubMed ID: 34864823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. More is better: combination therapies for myelodysplastic syndromes.
    Ornstein MC; Mukherjee S; Sekeres MA
    Best Pract Res Clin Haematol; 2015 Mar; 28(1):22-31. PubMed ID: 25659727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lost in translation? Ten years of development of histone deacetylase inhibitors in acute myeloid leukemia and myelodysplastic syndromes.
    Stahl M; Gore SD; Vey N; Prebet T
    Expert Opin Investig Drugs; 2016; 25(3):307-17. PubMed ID: 26807602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The changing mutational landscape of acute myeloid leukemia and myelodysplastic syndrome.
    Larsson CA; Cote G; Quintás-Cardama A
    Mol Cancer Res; 2013 Aug; 11(8):815-27. PubMed ID: 23645565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting Immune Signaling Pathways in Clonal Hematopoiesis.
    Azrakhsh NA; Mensah-Glanowska P; Sand K; Kittang AO
    Curr Med Chem; 2019; 26(28):5262-5277. PubMed ID: 30907306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Biological and clinical significance of TP53 mutations in myelodysplastic syndrome and acute myeloid leukemia].
    Kojima K
    Rinsho Ketsueki; 2023; 64(9):955-961. PubMed ID: 37793871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overview: A New Era of Cancer Genome in Myeloid Malignancies.
    Kiyoi H
    Oncology; 2015; 89 Suppl 1():1-3. PubMed ID: 26551625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The evolution of epigenetic therapy in myelodysplastic syndromes and acute myeloid leukemia.
    Gonzalez-Lugo JD; Chakraborty S; Verma A; Shastri A
    Semin Hematol; 2021 Jan; 58(1):56-65. PubMed ID: 33509444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Therapeutic targeting of the inflammasome in myeloid malignancies.
    Chakraborty S; Shapiro LC; de Oliveira S; Rivera-Pena B; Verma A; Shastri A
    Blood Cancer J; 2021 Sep; 11(9):152. PubMed ID: 34521810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenetic priming with decitabine followed by low dose idarubicin and cytarabine in acute myeloid leukemia evolving from myelodysplastic syndromes and higher-risk myelodysplastic syndromes: a prospective multicenter single-arm trial.
    Zhou X; Mei C; Zhang J; Lu Y; Lan J; Lin S; Zhang Y; Kuang Y; Ren Y; Ma L; Wei J; Ye L; Xu W; Li K; Lu C; Jin J; Tong H
    Hematol Oncol; 2020 Oct; 38(4):531-540. PubMed ID: 32469434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vorinostat induces apoptosis and differentiation in myeloid malignancies: genetic and molecular mechanisms.
    Silva G; Cardoso BA; Belo H; Almeida AM
    PLoS One; 2013; 8(1):e53766. PubMed ID: 23320102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Digging deep into "dirty" drugs - modulation of the methylation machinery.
    Pleyer L; Greil R
    Drug Metab Rev; 2015 May; 47(2):252-79. PubMed ID: 25566693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase IIB trial of oral Midostaurin (PKC412), the FMS-like tyrosine kinase 3 receptor (FLT3) and multi-targeted kinase inhibitor, in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome with either wild-type or mutated FLT3.
    Fischer T; Stone RM; Deangelo DJ; Galinsky I; Estey E; Lanza C; Fox E; Ehninger G; Feldman EJ; Schiller GJ; Klimek VM; Nimer SD; Gilliland DG; Dutreix C; Huntsman-Labed A; Virkus J; Giles FJ
    J Clin Oncol; 2010 Oct; 28(28):4339-45. PubMed ID: 20733134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Research progress on mechanism of MDS transformation into AML].
    Wang LL; Gao C; Chen BA
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2011 Feb; 19(1):254-9. PubMed ID: 21362264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic disulfide-triggered apoptosis and erythroid differentiation in myelodysplastic syndrome and acute myeloid leukemia cell lines.
    Hu XM; Yuan B; Tanaka S; Song MM; Onda K; Tohyama K; Zhou AX; Toyoda H; Hirano T
    Hematology; 2014 Sep; 19(6):352-60. PubMed ID: 24192507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of lenalidomide in the treatment of myelodysplastic syndromes.
    Komrokji RS; List AF
    Semin Oncol; 2011 Oct; 38(5):648-57. PubMed ID: 21943671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The emerging role of immune checkpoint based approaches in AML and MDS.
    Boddu P; Kantarjian H; Garcia-Manero G; Allison J; Sharma P; Daver N
    Leuk Lymphoma; 2018 Apr; 59(4):790-802. PubMed ID: 28679300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epigenetic dysregulation of ID4 predicts disease progression and treatment outcome in myeloid malignancies.
    Zhou JD; Zhang TJ; Li XX; Ma JC; Guo H; Wen XM; Zhang W; Yang L; Yan Y; Lin J; Qian J
    J Cell Mol Med; 2017 Aug; 21(8):1468-1481. PubMed ID: 28452111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Do preclinical studies suggest that CD99 is a potential therapeutic target in acute myeloid leukemia and the myelodysplastic syndromes?
    Tavakkoli M; Chung SS; Park CY
    Expert Opin Ther Targets; 2018 May; 22(5):381-383. PubMed ID: 29637789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigenetic therapies in MDS and AML.
    Griffiths EA; Gore SD
    Adv Exp Med Biol; 2013; 754():253-83. PubMed ID: 22956506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.