These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 34864888)
1. iRice-MS: An integrated XGBoost model for detecting multitype post-translational modification sites in rice. Lv H; Zhang Y; Wang JS; Yuan SS; Sun ZJ; Dao FY; Guan ZX; Lin H; Deng KJ Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34864888 [TBL] [Abstract][Full Text] [Related]
2. Malonylome analysis in developing rice (Oryza sativa) seeds suggesting that protein lysine malonylation is well-conserved and overlaps with acetylation and succinylation substantially. Mujahid H; Meng X; Xing S; Peng X; Wang C; Peng Z J Proteomics; 2018 Jan; 170():88-98. PubMed ID: 28882676 [TBL] [Abstract][Full Text] [Related]
3. Proteome-wide lysine acetylation identification in developing rice (Oryza sativa) seeds and protein co-modification by acetylation, succinylation, ubiquitination, and phosphorylation. Meng X; Lv Y; Mujahid H; Edelmann MJ; Zhao H; Peng X; Peng Z Biochim Biophys Acta Proteins Proteom; 2018 Mar; 1866(3):451-463. PubMed ID: 29313810 [TBL] [Abstract][Full Text] [Related]
4. PTM-ssMP: A Web Server for Predicting Different Types of Post-translational Modification Sites Using Novel Site-specific Modification Profile. Liu Y; Wang M; Xi J; Luo F; Li A Int J Biol Sci; 2018; 14(8):946-956. PubMed ID: 29989096 [TBL] [Abstract][Full Text] [Related]
5. Global Proteome Analyses of Lysine Acetylation and Succinylation Reveal the Widespread Involvement of both Modification in Metabolism in the Embryo of Germinating Rice Seed. He D; Wang Q; Li M; Damaris RN; Yi X; Cheng Z; Yang P J Proteome Res; 2016 Mar; 15(3):879-90. PubMed ID: 26767346 [TBL] [Abstract][Full Text] [Related]
6. Ubiquitinome Profiling Reveals the Landscape of Ubiquitination Regulation in Rice Young Panicles. Zhu L; Cheng H; Peng G; Wang S; Zhang Z; Ni E; Fu X; Zhuang C; Liu Z; Zhou H Genomics Proteomics Bioinformatics; 2020 Jun; 18(3):305-320. PubMed ID: 33147495 [TBL] [Abstract][Full Text] [Related]
7. PhosphOrtholog: a web-based tool for cross-species mapping of orthologous protein post-translational modifications. Chaudhuri R; Sadrieh A; Hoffman NJ; Parker BL; Humphrey SJ; Stöckli J; Hill AP; James DE; Yang JY BMC Genomics; 2015 Aug; 16(1):617. PubMed ID: 26283093 [TBL] [Abstract][Full Text] [Related]
8. Computational identification of multiple lysine PTM sites by analyzing the instance hardness and feature importance. Ahmed S; Rahman A; Hasan MAM; Ahmad S; Shovan SM Sci Rep; 2021 Sep; 11(1):18882. PubMed ID: 34556767 [TBL] [Abstract][Full Text] [Related]
9. Prediction of protein ubiquitination sites via multi-view features based on eXtreme gradient boosting classifier. Liu Y; Jin S; Song L; Han Y; Yu B J Mol Graph Model; 2021 Sep; 107():107962. PubMed ID: 34198216 [TBL] [Abstract][Full Text] [Related]
10. Deep-Kcr: accurate detection of lysine crotonylation sites using deep learning method. Lv H; Dao FY; Guan ZX; Yang H; Li YW; Lin H Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33099604 [TBL] [Abstract][Full Text] [Related]
11. predML-Site: Predicting Multiple Lysine PTM Sites With Optimal Feature Representation and Data Imbalance Minimization. Ahmed S; Rahman A; Hasan MAM; Rahman J; Islam MKB; Ahmad S IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3624-3634. PubMed ID: 34546927 [TBL] [Abstract][Full Text] [Related]
12. iPTM-mLys: identifying multiple lysine PTM sites and their different types. Qiu WR; Sun BQ; Xiao X; Xu ZC; Chou KC Bioinformatics; 2016 Oct; 32(20):3116-3123. PubMed ID: 27334473 [TBL] [Abstract][Full Text] [Related]
13. nhKcr: a new bioinformatics tool for predicting crotonylation sites on human nonhistone proteins based on deep learning. Chen YZ; Wang ZZ; Wang Y; Ying G; Chen Z; Song J Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34002774 [TBL] [Abstract][Full Text] [Related]
14. Discerning evolutionary trends in post-translational modification and the effect of intrinsic disorder: Analysis of methylation, acetylation and ubiquitination sites in human proteins. Narasumani M; Harrison PM PLoS Comput Biol; 2018 Aug; 14(8):e1006349. PubMed ID: 30096183 [TBL] [Abstract][Full Text] [Related]
15. Global Involvement of Lysine Crotonylation in Protein Modification and Transcription Regulation in Rice. Liu S; Xue C; Fang Y; Chen G; Peng X; Zhou Y; Chen C; Liu G; Gu M; Wang K; Zhang W; Wu Y; Gong Z Mol Cell Proteomics; 2018 Oct; 17(10):1922-1936. PubMed ID: 30021883 [TBL] [Abstract][Full Text] [Related]
16. Computational analysis and prediction of lysine malonylation sites by exploiting informative features in an integrative machine-learning framework. Zhang Y; Xie R; Wang J; Leier A; Marquez-Lago TT; Akutsu T; Webb GI; Chou KC; Song J Brief Bioinform; 2019 Nov; 20(6):2185-2199. PubMed ID: 30351377 [TBL] [Abstract][Full Text] [Related]
17. mUSP: a high-accuracy map of the in situ crosstalk of ubiquitylation and SUMOylation proteome predicted via the feature enhancement approach. Xu HD; Liang RP; Wang YG; Qiu JD Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32382739 [TBL] [Abstract][Full Text] [Related]
18. Comprehensive profiling of the rice ubiquitome reveals the significance of lysine ubiquitination in young leaves. Xie X; Kang H; Liu W; Wang GL J Proteome Res; 2015 May; 14(5):2017-25. PubMed ID: 25751157 [TBL] [Abstract][Full Text] [Related]
19. RMTLysPTM: recognizing multiple types of lysine PTM sites by deep analysis on sequences. Chen L; Chen Y Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38066710 [TBL] [Abstract][Full Text] [Related]
20. Identifying Acetylation Protein by Fusing Its PseAAC and Functional Domain Annotation. Qiu WR; Xu A; Xu ZC; Zhang CH; Xiao X Front Bioeng Biotechnol; 2019; 7():311. PubMed ID: 31867311 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]