These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 34864909)
1. Detecting spatially co-expressed gene clusters with functional coherence by graph-regularized convolutional neural network. Song T; Markham KK; Li Z; Muller KE; Greenham K; Kuang R Bioinformatics; 2022 Feb; 38(5):1344-1352. PubMed ID: 34864909 [TBL] [Abstract][Full Text] [Related]
2. STGNNks: Identifying cell types in spatial transcriptomics data based on graph neural network, denoising auto-encoder, and k-sums clustering. Peng L; He X; Peng X; Li Z; Zhang L Comput Biol Med; 2023 Nov; 166():107440. PubMed ID: 37738898 [TBL] [Abstract][Full Text] [Related]
3. Imputation of spatially-resolved transcriptomes by graph-regularized tensor completion. Li Z; Song T; Yong J; Kuang R PLoS Comput Biol; 2021 Apr; 17(4):e1008218. PubMed ID: 33826608 [TBL] [Abstract][Full Text] [Related]
4. Assembling spatial clustering framework for heterogeneous spatial transcriptomics data with GRAPHDeep. Liu T; Fang Z; Li X; Zhang L; Cao DS; Li M; Yin M Bioinformatics; 2024 Jan; 40(1):. PubMed ID: 38243703 [TBL] [Abstract][Full Text] [Related]
7. SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Hu J; Li X; Coleman K; Schroeder A; Ma N; Irwin DJ; Lee EB; Shinohara RT; Li M Nat Methods; 2021 Nov; 18(11):1342-1351. PubMed ID: 34711970 [TBL] [Abstract][Full Text] [Related]
8. Predicting spatially resolved gene expression via tissue morphology using adaptive spatial GNNs. Song T; Cosatto E; Wang G; Kuang R; Gerstein M; Min MR; Warrell J Bioinformatics; 2024 Sep; 40(Suppl 2):ii111-ii119. PubMed ID: 39230702 [TBL] [Abstract][Full Text] [Related]
9. Deciphering high-order structures in spatial transcriptomes with graph-guided Tucker decomposition. Broadbent C; Song T; Kuang R Bioinformatics; 2024 Jun; 40(Suppl 1):i529-i538. PubMed ID: 38940176 [TBL] [Abstract][Full Text] [Related]
10. Identifying spatial domains of spatially resolved transcriptomics via multi-view graph convolutional networks. Shi X; Zhu J; Long Y; Liang C Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37544658 [TBL] [Abstract][Full Text] [Related]
11. Accurately deciphering spatial domains for spatially resolved transcriptomics with stCluster. Wang T; Shu H; Hu J; Wang Y; Chen J; Peng J; Shang X Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38975895 [TBL] [Abstract][Full Text] [Related]
12. Deciphering tissue heterogeneity from spatially resolved transcriptomics by the autoencoder-assisted graph convolutional neural network. Li X; Huang W; Xu X; Zhang HY; Shi Q Front Genet; 2023; 14():1202409. PubMed ID: 37303949 [TBL] [Abstract][Full Text] [Related]
13. stAA: adversarial graph autoencoder for spatial clustering task of spatially resolved transcriptomics. Fang Z; Liu T; Zheng R; A J; Yin M; Li M Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38189544 [TBL] [Abstract][Full Text] [Related]
14. Integrating multi-modal information to detect spatial domains of spatial transcriptomics by graph attention network. Huo Y; Guo Y; Wang J; Xue H; Feng Y; Chen W; Li X J Genet Genomics; 2023 Sep; 50(9):720-733. PubMed ID: 37356752 [TBL] [Abstract][Full Text] [Related]
15. SD2: spatially resolved transcriptomics deconvolution through integration of dropout and spatial information. Li H; Li H; Zhou J; Gao X Bioinformatics; 2022 Oct; 38(21):4878-4884. PubMed ID: 36063455 [TBL] [Abstract][Full Text] [Related]
16. GCNG: graph convolutional networks for inferring gene interaction from spatial transcriptomics data. Yuan Y; Bar-Joseph Z Genome Biol; 2020 Dec; 21(1):300. PubMed ID: 33303016 [TBL] [Abstract][Full Text] [Related]
17. A multi-modality and multi-granularity collaborative learning framework for identifying spatial domains and spatially variable genes. Liang X; Liu P; Xue L; Chen B; Liu W; Shi W; Wang Y; Chen X; Luo J Bioinformatics; 2024 Oct; 40(10):. PubMed ID: 39418177 [TBL] [Abstract][Full Text] [Related]
18. Define and visualize pathological architectures of human tissues from spatially resolved transcriptomics using deep learning. Chang Y; He F; Wang J; Chen S; Li J; Liu J; Yu Y; Su L; Ma A; Allen C; Lin Y; Sun S; Liu B; Javier Otero J; Chung D; Fu H; Li Z; Xu D; Ma Q Comput Struct Biotechnol J; 2022; 20():4600-4617. PubMed ID: 36090815 [TBL] [Abstract][Full Text] [Related]
19. Unsupervised construction of computational graphs for gene expression data with explicit structural inductive biases. Scherer P; Trębacz M; Simidjievski N; Viñas R; Shams Z; Terre HA; Jamnik M; Liò P Bioinformatics; 2022 Feb; 38(5):1320-1327. PubMed ID: 34888618 [TBL] [Abstract][Full Text] [Related]
20. Unraveling Spatial Domain Characterization in Spatially Resolved Transcriptomics with Robust Graph Contrastive Clustering. Zhang Y; Yu Z; Wong KC; Li X Bioinformatics; 2024 Jul; 40(7):. PubMed ID: 39012523 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]