These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 34864918)

  • 21. Removal of batch effects using distribution-matching residual networks.
    Shaham U; Stanton KP; Zhao J; Li H; Raddassi K; Montgomery R; Kluger Y
    Bioinformatics; 2017 Aug; 33(16):2539-2546. PubMed ID: 28419223
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A machine learning-based method for automatically identifying novel cells in annotating single-cell RNA-seq data.
    Li Z; Wang Y; Ganan-Gomez I; Colla S; Do KA
    Bioinformatics; 2022 Oct; 38(21):4885-4892. PubMed ID: 36083008
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Learning discriminative and structural samples for rare cell types with deep generative model.
    Wang H; Ma X
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35914950
    [TBL] [Abstract][Full Text] [Related]  

  • 24. AGImpute: imputation of scRNA-seq data based on a hybrid GAN with dropouts identification.
    Zhu X; Meng S; Li G; Wang J; Peng X
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38317025
    [TBL] [Abstract][Full Text] [Related]  

  • 25. scGAD: a new task and end-to-end framework for generalized cell type annotation and discovery.
    Zhai Y; Chen L; Deng M
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36869836
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NDMNN: A novel deep residual network based MNN method to remove batch effects from scRNA-seq data.
    Ma Y; Pei Y
    J Bioinform Comput Biol; 2024 Jun; 22(3):2450015. PubMed ID: 39036845
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CellVGAE: an unsupervised scRNA-seq analysis workflow with graph attention networks.
    Buterez D; Bica I; Tariq I; Andrés-Terré H; Liò P
    Bioinformatics; 2022 Feb; 38(5):1277-1286. PubMed ID: 34864884
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel batch-effect correction method for scRNA-seq data based on Adversarial Information Factorization.
    Monnier L; Cournède PH
    PLoS Comput Biol; 2024 Feb; 20(2):e1011880. PubMed ID: 38386700
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A joint deep learning model enables simultaneous batch effect correction, denoising, and clustering in single-cell transcriptomics.
    Lakkis J; Wang D; Zhang Y; Hu G; Wang K; Pan H; Ungar L; Reilly MP; Li X; Li M
    Genome Res; 2021 Oct; 31(10):1753-1766. PubMed ID: 34035047
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Con-AAE: contrastive cycle adversarial autoencoders for single-cell multi-omics alignment and integration.
    Wang X; Hu Z; Yu T; Wang Y; Wang R; Wei Y; Shu J; Ma J; Li Y
    Bioinformatics; 2023 Apr; 39(4):. PubMed ID: 36975610
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge.
    Mukherjee S; Zhang Y; Fan J; Seelig G; Kannan S
    Bioinformatics; 2018 Jul; 34(13):i124-i132. PubMed ID: 29949988
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deep structural clustering for single-cell RNA-seq data jointly through autoencoder and graph neural network.
    Gan Y; Huang X; Zou G; Zhou S; Guan J
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35172334
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Propensity score matching enables batch-effect-corrected imputation in single-cell RNA-seq analysis.
    Xu X; Yu X; Hu G; Wang K; Zhang J; Li X
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35821114
    [TBL] [Abstract][Full Text] [Related]  

  • 34. FlowGrid enables fast clustering of very large single-cell RNA-seq data.
    Fang X; Ho JWK
    Bioinformatics; 2021 Dec; 38(1):282-283. PubMed ID: 34289014
    [TBL] [Abstract][Full Text] [Related]  

  • 35. scMAE: a masked autoencoder for single-cell RNA-seq clustering.
    Fang Z; Zheng R; Li M
    Bioinformatics; 2024 Jan; 40(1):. PubMed ID: 38230824
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integrating Multiple Single-Cell RNA Sequencing Datasets Using Adversarial Autoencoders.
    Wang X; Zhang C; Wang L; Zheng P
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982574
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Visualizing hierarchies in scRNA-seq data using a density tree-biased autoencoder.
    Garrido Q; Damrich S; Jäger A; Cerletti D; Claassen M; Najman L; Hamprecht FA
    Bioinformatics; 2022 Jun; 38(Suppl 1):i316-i324. PubMed ID: 35758814
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spectral clustering based on learning similarity matrix.
    Park S; Zhao H
    Bioinformatics; 2018 Jun; 34(12):2069-2076. PubMed ID: 29432517
    [TBL] [Abstract][Full Text] [Related]  

  • 39. scGMAAE: Gaussian mixture adversarial autoencoders for diversification analysis of scRNA-seq data.
    Wang HY; Zhao JP; Zheng CH; Su YS
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36592058
    [TBL] [Abstract][Full Text] [Related]  

  • 40. scCNC: a method based on capsule network for clustering scRNA-seq data.
    Wang HY; Zhao JP; Zheng CH; Su YS
    Bioinformatics; 2022 Aug; 38(15):3703-3709. PubMed ID: 35699473
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.