BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 34865113)

  • 1. Small molecules mediate cellular reprogramming across two kingdoms.
    Welsch R; Touraev A; Palme K
    J Exp Bot; 2021 Dec; 72(22):7645-7647. PubMed ID: 34865113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plant regeneration: cellular origins and molecular mechanisms.
    Ikeuchi M; Ogawa Y; Iwase A; Sugimoto K
    Development; 2016 May; 143(9):1442-51. PubMed ID: 27143753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant cell totipotency: Insights into cellular reprogramming.
    Su YH; Tang LP; Zhao XY; Zhang XS
    J Integr Plant Biol; 2021 Jan; 63(1):228-243. PubMed ID: 32437079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Mechanisms of Plant Regeneration.
    Ikeuchi M; Favero DS; Sakamoto Y; Iwase A; Coleman D; Rymen B; Sugimoto K
    Annu Rev Plant Biol; 2019 Apr; 70():377-406. PubMed ID: 30786238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From Single Cell to Plants: Mesophyll Protoplasts as a Versatile System for Investigating Plant Cell Reprogramming.
    Pasternak T; Lystvan K; Betekhtin A; Hasterok R
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32545519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant hormones increase efficiency of reprogramming mouse somatic cells to induced pluripotent stem cells and reduce tumorigenicity.
    Alvarez Palomo AB; McLenachan S; Requena Osete J; Menchón C; Barrot C; Chen F; Munné-Bosch S; Edel MJ
    Stem Cells Dev; 2014 Mar; 23(6):586-93. PubMed ID: 24251409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Auxin Biosynthesis, Accumulation, Action and Transport are Involved in Stress-Induced Microspore Embryogenesis Initiation and Progression in Brassica napus.
    Rodríguez-Sanz H; Solís MT; López MF; Gómez-Cadenas A; Risueño MC; Testillano PS
    Plant Cell Physiol; 2015 Jul; 56(7):1401-17. PubMed ID: 25907568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small molecule inhibitors of mammalian GSK-3β promote in vitro plant cell reprogramming and somatic embryogenesis in crop and forest species.
    Berenguer E; Carneros E; Pérez-Pérez Y; Gil C; Martínez A; Testillano PS
    J Exp Bot; 2021 Dec; 72(22):7808-7825. PubMed ID: 34338766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Auxin-cytokinin interactions in higher plants: old problems and new tools.
    Coenen C; Lomax TL
    Trends Plant Sci; 1997 Sep; 2(9):351-6. PubMed ID: 11540614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PROPORZ1, a putative Arabidopsis transcriptional adaptor protein, mediates auxin and cytokinin signals in the control of cell proliferation.
    Sieberer T; Hauser MT; Seifert GJ; Luschnig C
    Curr Biol; 2003 May; 13(10):837-42. PubMed ID: 12747832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell cycle regulation by plant growth regulators: involvement of auxin and cytokinin in the re-entry of Petunia protoplasts into the cell cycle.
    Tréhin C; Planchais S; Glab N; Perennes C; Tregear J; Bergounioux C
    Planta; 1998 Oct; 206(2):215-24. PubMed ID: 9737000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The hormonal control of regeneration in plants.
    Su YH; Zhang XS
    Curr Top Dev Biol; 2014; 108():35-69. PubMed ID: 24512705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatin Accessibility Dynamics and a Hierarchical Transcriptional Regulatory Network Structure for Plant Somatic Embryogenesis.
    Wang FX; Shang GD; Wu LY; Xu ZG; Zhao XY; Wang JW
    Dev Cell; 2020 Sep; 54(6):742-757.e8. PubMed ID: 32755547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of gibberellin and cytokinin in the formation of embryogenic cell clumps in carrot (Daucus carota).
    Tokuji Y; Kuriyama K
    J Plant Physiol; 2003 Feb; 160(2):133-41. PubMed ID: 12685029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Gene Regulatory Network for Cellular Reprogramming in Plant Regeneration.
    Ikeuchi M; Shibata M; Rymen B; Iwase A; Bågman AM; Watt L; Coleman D; Favero DS; Takahashi T; Ahnert SE; Brady SM; Sugimoto K
    Plant Cell Physiol; 2018 Apr; 59(4):765-777. PubMed ID: 29462363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional changes of antioxidant responses, hormone signalling and developmental processes evoked by the Brassica napus SHOOTMERISTEMLESS during in vitro embryogenesis.
    Elhiti M; Yang C; Belmonte MF; Gulden RH; Stasolla C
    Plant Physiol Biochem; 2012 Sep; 58():297-311. PubMed ID: 22878158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Auxin-cytokinin interaction regulates meristem development.
    Su YH; Liu YB; Zhang XS
    Mol Plant; 2011 Jul; 4(4):616-25. PubMed ID: 21357646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new microspore embryogenesis system under low temperature which mimics zygotic embryogenesis initials, expresses auxin and efficiently regenerates doubled-haploid plants in Brassica napus.
    Prem D; Solís MT; Bárány I; Rodríguez-Sanz H; Risueño MC; Testillano PS
    BMC Plant Biol; 2012 Aug; 12():127. PubMed ID: 22857779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of heat stress on auxin distribution in transgenic B. napus microspores and microspore-derived embryos.
    Dubas E; Moravčíková J; Libantová J; Matušíková I; Benková E; Zur I; Krzewska M
    Protoplasma; 2014 Sep; 251(5):1077-87. PubMed ID: 24553810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal integration of auxin information for the regulation of patterning.
    Galvan-Ampudia CS; Cerutti G; Legrand J; Brunoud G; Martin-Arevalillo R; Azais R; Bayle V; Moussu S; Wenzl C; Jaillais Y; Lohmann JU; Godin C; Vernoux T
    Elife; 2020 May; 9():. PubMed ID: 32379043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.