These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 34865141)

  • 1. A vacuolar hexose transport is required for xylem development in the inflorescence stem.
    Aubry E; Hoffmann B; Vilaine F; Gilard F; Klemens PAW; Guérard F; Gakière B; Neuhaus HE; Bellini C; Dinant S; Le Hir R
    Plant Physiol; 2022 Feb; 188(2):1229-1247. PubMed ID: 34865141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SWEET17, a facilitative transporter, mediates fructose transport across the tonoplast of Arabidopsis roots and leaves.
    Guo WJ; Nagy R; Chen HY; Pfrunder S; Yu YC; Santelia D; Frommer WB; Martinoia E
    Plant Physiol; 2014 Feb; 164(2):777-89. PubMed ID: 24381066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The translation elongation factor eEF-1Bβ1 is involved in cell wall biosynthesis and plant development in Arabidopsis thaliana.
    Hossain Z; Amyot L; McGarvey B; Gruber M; Jung J; Hannoufa A
    PLoS One; 2012; 7(1):e30425. PubMed ID: 22272350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis.
    Klemens PA; Patzke K; Deitmer J; Spinner L; Le Hir R; Bellini C; Bedu M; Chardon F; Krapp A; Neuhaus HE
    Plant Physiol; 2013 Nov; 163(3):1338-52. PubMed ID: 24028846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbohydrate distribution via SWEET17 is critical for Arabidopsis inflorescence branching under drought.
    Valifard M; Khan A; Berg J; Le Hir R; Pommerrenig B; Neuhaus HE; Keller I
    J Exp Bot; 2024 Jul; 75(13):3903-3919. PubMed ID: 38530289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arabidopsis VASCULAR-RELATED UNKNOWN PROTEIN1 regulates xylem development and growth by a conserved mechanism that modulates hormone signaling.
    Grienenberger E; Douglas CJ
    Plant Physiol; 2014 Apr; 164(4):1991-2010. PubMed ID: 24567189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Salinity Effects on Sugar Homeostasis and Vascular Anatomy in the Stem of the
    Sellami S; Le Hir R; Thorpe MR; Vilaine F; Wolff N; Brini F; Dinant S
    Int J Mol Sci; 2019 Jun; 20(13):. PubMed ID: 31261714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The papain-like cysteine protease CEP1 is involved in programmed cell death and secondary wall thickening during xylem development in Arabidopsis.
    Han J; Li H; Yin B; Zhang Y; Liu Y; Cheng Z; Liu D; Lu H
    J Exp Bot; 2019 Jan; 70(1):205-215. PubMed ID: 30376110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. XYLEM INTERMIXED WITH PHLOEM1, a leucine-rich repeat receptor-like kinase required for stem growth and vascular development in Arabidopsis thaliana.
    Bryan AC; Obaidi A; Wierzba M; Tax FE
    Planta; 2012 Jan; 235(1):111-22. PubMed ID: 21853254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The boron efflux transporter ROTTEN EAR is required for maize inflorescence development and fertility.
    Chatterjee M; Tabi Z; Galli M; Malcomber S; Buck A; Muszynski M; Gallavotti A
    Plant Cell; 2014 Jul; 26(7):2962-77. PubMed ID: 25035400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impairment of sugar transport in the vascular system acts on nitrogen remobilization and nitrogen use efficiency in Arabidopsis.
    Hoffmann B; Aubry E; Marmagne A; Dinant S; Chardon F; Le Hir R
    Physiol Plant; 2022 Nov; 174(6):e13830. PubMed ID: 36437708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional analysis of an Arabidopsis thaliana abiotic stress-inducible facilitated diffusion transporter for monosaccharides.
    Yamada K; Osakabe Y; Mizoi J; Nakashima K; Fujita Y; Shinozaki K; Yamaguchi-Shinozaki K
    J Biol Chem; 2010 Jan; 285(2):1138-46. PubMed ID: 19901034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrogen Use Efficiency Is Mediated by Vacuolar Nitrate Sequestration Capacity in Roots of Brassica napus.
    Han YL; Song HX; Liao Q; Yu Y; Jian SF; Lepo JE; Liu Q; Rong XM; Tian C; Zeng J; Guan CY; Ismail AM; Zhang ZH
    Plant Physiol; 2016 Mar; 170(3):1684-98. PubMed ID: 26757990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ANAC012, a member of the plant-specific NAC transcription factor family, negatively regulates xylary fiber development in Arabidopsis thaliana.
    Ko JH; Yang SH; Park AH; Lerouxel O; Han KH
    Plant J; 2007 Jun; 50(6):1035-48. PubMed ID: 17565617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mobile gibberellin directly stimulates Arabidopsis hypocotyl xylem expansion.
    Ragni L; Nieminen K; Pacheco-Villalobos D; Sibout R; Schwechheimer C; Hardtke CS
    Plant Cell; 2011 Apr; 23(4):1322-36. PubMed ID: 21498678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sucrose (JrSUT1) and hexose (JrHT1 and JrHT2) transporters in walnut xylem parenchyma cells: their potential role in early events of growth resumption.
    Decourteix M; Alves G; Bonhomme M; Peuch M; Ben Baaziz K; Brunel N; Guilliot A; Rageau R; Améglio T; Pétel G; Sakr S
    Tree Physiol; 2008 Feb; 28(2):215-24. PubMed ID: 18055432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flowering as a condition for xylem expansion in Arabidopsis hypocotyl and root.
    Sibout R; Plantegenet S; Hardtke CS
    Curr Biol; 2008 Mar; 18(6):458-63. PubMed ID: 18356049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An atypical bHLH transcription factor regulates early xylem development downstream of auxin.
    Ohashi-Ito K; Matsukawa M; Fukuda H
    Plant Cell Physiol; 2013 Mar; 54(3):398-405. PubMed ID: 23359424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Arabidopsis wood model-the case for the inflorescence stem.
    Strabala TJ; Macmillan CP
    Plant Sci; 2013 Sep; 210():193-205. PubMed ID: 23849126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. VASCULAR-RELATED NAC-DOMAIN7 directly regulates the expression of a broad range of genes for xylem vessel formation.
    Yamaguchi M; Mitsuda N; Ohtani M; Ohme-Takagi M; Kato K; Demura T
    Plant J; 2011 May; 66(4):579-90. PubMed ID: 21284754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.