These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 34865532)

  • 1. Permafrost thaw driven changes in hydrology and vegetation cover increase trace gas emissions and climate forcing in Stordalen Mire from 1970 to 2014.
    Varner RK; Crill PM; Frolking S; McCalley CK; Burke SA; Chanton JP; Holmes ME; ; Saleska S; Palace MW
    Philos Trans A Math Phys Eng Sci; 2022 Jan; 380(2215):20210022. PubMed ID: 34865532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changing climatic controls on the greenhouse gas balance of thermokarst bogs during succession after permafrost thaw.
    Heffernan L; Estop-Aragonés C; Kuhn MA; Holger-Knorr K; Olefeldt D
    Glob Chang Biol; 2024 Jul; 30(7):e17388. PubMed ID: 38967139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The positive net radiative greenhouse gas forcing of increasing methane emissions from a thawing boreal forest-wetland landscape.
    Helbig M; Chasmer LE; Kljun N; Quinton WL; Treat CC; Sonnentag O
    Glob Chang Biol; 2017 Jun; 23(6):2413-2427. PubMed ID: 27689625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw.
    Voigt C; Marushchak ME; Mastepanov M; Lamprecht RE; Christensen TR; Dorodnikov M; Jackowicz-Korczyński M; Lindgren A; Lohila A; Nykänen H; Oinonen M; Oksanen T; Palonen V; Treat CC; Martikainen PJ; Biasi C
    Glob Chang Biol; 2019 May; 25(5):1746-1764. PubMed ID: 30681758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature and peat type control CO2 and CH4 production in Alaskan permafrost peats.
    Treat CC; Wollheim WM; Varner RK; Grandy AS; Talbot J; Frolking S
    Glob Chang Biol; 2014 Aug; 20(8):2674-86. PubMed ID: 24616169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methylotrophy in the Mire: direct and indirect routes for methane production in thawing permafrost.
    Ellenbogen JB; Borton MA; McGivern BB; Cronin DR; Hoyt DW; Freire-Zapata V; McCalley CK; Varner RK; Crill PM; Wehr RA; Chanton JP; Woodcroft BJ; Tfaily MM; Tyson GW; Rich VI; Wrighton KC
    mSystems; 2024 Jan; 9(1):e0069823. PubMed ID: 38063415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling plant litter quantity to a novel metric for litter quality explains C storage changes in a thawing permafrost peatland.
    Hough M; McCabe S; Vining SR; Pickering Pedersen E; Wilson RM; Lawrence R; Chang KY; Bohrer G; ; Riley WJ; Crill PM; Varner RK; Blazewicz SJ; Dorrepaal E; Tfaily MM; Saleska SR; Rich VI
    Glob Chang Biol; 2022 Feb; 28(3):950-968. PubMed ID: 34727401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial network, phylogenetic diversity and community membership in the active layer across a permafrost thaw gradient.
    Mondav R; McCalley CK; Hodgkins SB; Frolking S; Saleska SR; Rich VI; Chanton JP; Crill PM
    Environ Microbiol; 2017 Aug; 19(8):3201-3218. PubMed ID: 28574203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Persistent net release of carbon dioxide and methane from an Alaskan lowland boreal peatland complex.
    Euskirchen ES; Edgar CW; Kane ES; Waldrop MP; Neumann RB; Manies KL; Douglas TA; Dieleman C; Jones MC; Turetsky MR
    Glob Chang Biol; 2024 Jan; 30(1):e17139. PubMed ID: 38273498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production.
    Hodgkins SB; Tfaily MM; McCalley CK; Logan TA; Crill PM; Saleska SR; Rich VI; Chanton JP
    Proc Natl Acad Sci U S A; 2014 Apr; 111(16):5819-24. PubMed ID: 24711402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methane dynamics regulated by microbial community response to permafrost thaw.
    McCalley CK; Woodcroft BJ; Hodgkins SB; Wehr RA; Kim EH; Mondav R; Crill PM; Chanton JP; Rich VI; Tyson GW; Saleska SR
    Nature; 2014 Oct; 514(7523):478-81. PubMed ID: 25341787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw.
    Hugelius G; Loisel J; Chadburn S; Jackson RB; Jones M; MacDonald G; Marushchak M; Olefeldt D; Packalen M; Siewert MB; Treat C; Turetsky M; Voigt C; Yu Z
    Proc Natl Acad Sci U S A; 2020 Aug; 117(34):20438-20446. PubMed ID: 32778585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of microbial communities and CO
    Kwon MJ; Jung JY; Tripathi BM; Göckede M; Lee YK; Kim M
    J Microbiol; 2019 May; 57(5):325-336. PubMed ID: 30656588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lowering water table reduces carbon sink strength and carbon stocks in northern peatlands.
    Kwon MJ; Ballantyne A; Ciais P; Qiu C; Salmon E; Raoult N; Guenet B; Göckede M; Euskirchen ES; Nykänen H; Schuur EAG; Turetsky MR; Dieleman CM; Kane ES; Zona D
    Glob Chang Biol; 2022 Nov; 28(22):6752-6770. PubMed ID: 36039832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Climate driven release of carbon and mercury from permafrost mires increases mercury loading to sub-arctic lakes.
    Rydberg J; Klaminder J; Rosén P; Bindler R
    Sci Total Environ; 2010 Sep; 408(20):4778-83. PubMed ID: 20674959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of environmental driving factors in historical and projected carbon dynamics of wetland ecosystems in Alaska.
    Lyu Z; Genet H; He Y; Zhuang Q; McGuire AD; Bennett A; Breen A; Clein J; Euskirchen ES; Johnson K; Kurkowski T; Pastick NJ; Rupp TS; Wylie BK; Zhu Z
    Ecol Appl; 2018 Sep; 28(6):1377-1395. PubMed ID: 29808543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Permafrost condition determines plant community composition and community-level foliar functional traits in a boreal peatland.
    Standen KM; Baltzer JL
    Ecol Evol; 2021 Aug; 11(15):10133-10146. PubMed ID: 34367564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental and physical controls on northern terrestrial methane emissions across permafrost zones.
    Olefeldt D; Turetsky MR; Crill PM; McGuire AD
    Glob Chang Biol; 2013 Feb; 19(2):589-603. PubMed ID: 23504795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiative forcing of methane fluxes offsets net carbon dioxide uptake for a tropical flooded forest.
    Dalmagro HJ; Zanella de Arruda PH; Vourlitis GL; Lathuillière MJ; de S Nogueira J; Couto EG; Johnson MS
    Glob Chang Biol; 2019 Jun; 25(6):1967-1981. PubMed ID: 30854765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A catchment-scale carbon and greenhouse gas budget of a subarctic landscape.
    Christensen TR; Johansson T; Olsrud M; Ström L; Lindroth A; Mastepanov M; Malmer N; Friborg T; Crill P; Callaghan TV
    Philos Trans A Math Phys Eng Sci; 2007 Jul; 365(1856):1643-56. PubMed ID: 17513266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.