These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
26. Challenges for the application of optical stimulation in the cochlea for the study and treatment of hearing loss. Richardson RT; Thompson AC; Wise AK; Needham K Expert Opin Biol Ther; 2017 Feb; 17(2):213-223. PubMed ID: 27960585 [TBL] [Abstract][Full Text] [Related]
27. Optogenetic activation of neocortical neurons in vivo with a sapphire-based micro-scale LED probe. McAlinden N; Gu E; Dawson MD; Sakata S; Mathieson K Front Neural Circuits; 2015; 9():25. PubMed ID: 26074778 [TBL] [Abstract][Full Text] [Related]
28. Theoretical Study on Gold-Nanorod-Enhanced Near-Infrared Neural Stimulation. Eom K; Byun KM; Jun SB; Kim SJ; Lee J Biophys J; 2018 Oct; 115(8):1481-1497. PubMed ID: 30266321 [TBL] [Abstract][Full Text] [Related]
30. Probing activation-induced neurochemical changes using optogenetics combined with functional magnetic resonance spectroscopy: a feasibility study in the rat primary somatosensory cortex. Just N; Faber C J Neurochem; 2019 Aug; 150(4):402-419. PubMed ID: 31222733 [TBL] [Abstract][Full Text] [Related]
31. All-Optical Electrophysiology for Disease Modeling and Pharmacological Characterization of Neurons. Werley CA; Brookings T; Upadhyay H; Williams LA; McManus OB; Dempsey GT Curr Protoc Pharmacol; 2017 Sep; 78():11.20.1-11.20.24. PubMed ID: 28892145 [TBL] [Abstract][Full Text] [Related]
33. A Compact Closed-Loop Optogenetics System Based on Artifact-Free Transparent Graphene Electrodes. Liu X; Lu Y; Iseri E; Shi Y; Kuzum D Front Neurosci; 2018; 12():132. PubMed ID: 29559885 [TBL] [Abstract][Full Text] [Related]
34. Optical control of ERK and AKT signaling promotes axon regeneration and functional recovery of PNS and CNS in Wang Q; Fan H; Li F; Skeeters SS; Krishnamurthy VV; Song Y; Zhang K Elife; 2020 Oct; 9():. PubMed ID: 33021199 [TBL] [Abstract][Full Text] [Related]
35. Current Review of Optical Neural Interfaces for Clinical Applications. Park Y; Park SY; Eom K Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442547 [TBL] [Abstract][Full Text] [Related]
36. Spatio-temporal control of neural activity in vivo using fluorescence microendoscopy. Hayashi Y; Tagawa Y; Yawata S; Nakanishi S; Funabiki K Eur J Neurosci; 2012 Sep; 36(6):2722-32. PubMed ID: 22780218 [TBL] [Abstract][Full Text] [Related]
38. An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications. Wu F; Stark E; Im M; Cho IJ; Yoon ES; Buzsáki G; Wise KD; Yoon E J Neural Eng; 2013 Oct; 10(5):056012. PubMed ID: 23985803 [TBL] [Abstract][Full Text] [Related]
39. Compact Optical Nerve Cuff Electrode for Simultaneous Neural Activity Monitoring and Optogenetic Stimulation of Peripheral Nerves. Song KI; Park SE; Lee S; Kim H; Lee SH; Youn I Sci Rep; 2018 Oct; 8(1):15630. PubMed ID: 30353118 [TBL] [Abstract][Full Text] [Related]
40. Opto- μECoG array: a hybrid neural interface with transparent μECoG electrode array and integrated LEDs for optogenetics. Kwon KY; Sirowatka B; Weber A; Li W IEEE Trans Biomed Circuits Syst; 2013 Oct; 7(5):593-600. PubMed ID: 24144668 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]