These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34865559)

  • 21. An integrated μLED optrode for optogenetic stimulation and electrical recording.
    Cao H; Gu L; Mohanty SK; Chiao JC
    IEEE Trans Biomed Eng; 2013 Jan; 60(1):225-9. PubMed ID: 22968201
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimization of an optrode microdevice for infrared neural stimulation.
    Boros ÖC; Horváth ÁC; Beleznai S; Sepsi Ö; Csősz D; Fekete Z; Koppa P
    Appl Opt; 2019 May; 58(14):3870-3876. PubMed ID: 31158202
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optogenetics: a novel optical manipulation tool for medical investigation.
    Yao JP; Hou WS; Yin ZQ
    Int J Ophthalmol; 2012; 5(4):517-22. PubMed ID: 22937517
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Infrared neural stimulation in the cochlea.
    Richter CP; Rajguru S; Bendett M
    Proc SPIE Int Soc Opt Eng; 2013 Mar; 8565():85651Y. PubMed ID: 25075260
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Viral-mediated transduction of auditory neurons with opsins for optical and hybrid activation.
    Richardson RT; Thompson AC; Wise AK; Ajay EA; Gunewardene N; O'Leary SJ; Stoddart PR; Fallon JB
    Sci Rep; 2021 May; 11(1):11229. PubMed ID: 34045604
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Challenges for the application of optical stimulation in the cochlea for the study and treatment of hearing loss.
    Richardson RT; Thompson AC; Wise AK; Needham K
    Expert Opin Biol Ther; 2017 Feb; 17(2):213-223. PubMed ID: 27960585
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optogenetic activation of neocortical neurons in vivo with a sapphire-based micro-scale LED probe.
    McAlinden N; Gu E; Dawson MD; Sakata S; Mathieson K
    Front Neural Circuits; 2015; 9():25. PubMed ID: 26074778
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Theoretical Study on Gold-Nanorod-Enhanced Near-Infrared Neural Stimulation.
    Eom K; Byun KM; Jun SB; Kim SJ; Lee J
    Biophys J; 2018 Oct; 115(8):1481-1497. PubMed ID: 30266321
    [TBL] [Abstract][Full Text] [Related]  

  • 29. All-optical functional synaptic connectivity mapping in acute brain slices using the calcium integrator CaMPARI.
    Zolnik TA; Sha F; Johenning FW; Schreiter ER; Looger LL; Larkum ME; Sachdev RN
    J Physiol; 2017 Mar; 595(5):1465-1477. PubMed ID: 27861906
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Probing activation-induced neurochemical changes using optogenetics combined with functional magnetic resonance spectroscopy: a feasibility study in the rat primary somatosensory cortex.
    Just N; Faber C
    J Neurochem; 2019 Aug; 150(4):402-419. PubMed ID: 31222733
    [TBL] [Abstract][Full Text] [Related]  

  • 31. All-Optical Electrophysiology for Disease Modeling and Pharmacological Characterization of Neurons.
    Werley CA; Brookings T; Upadhyay H; Williams LA; McManus OB; Dempsey GT
    Curr Protoc Pharmacol; 2017 Sep; 78():11.20.1-11.20.24. PubMed ID: 28892145
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optogenetic brain interfaces.
    Pashaie R; Anikeeva P; Lee JH; Prakash R; Yizhar O; Prigge M; Chander D; Richner TJ; Williams J
    IEEE Rev Biomed Eng; 2014; 7():3-30. PubMed ID: 24802525
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Compact Closed-Loop Optogenetics System Based on Artifact-Free Transparent Graphene Electrodes.
    Liu X; Lu Y; Iseri E; Shi Y; Kuzum D
    Front Neurosci; 2018; 12():132. PubMed ID: 29559885
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optical control of ERK and AKT signaling promotes axon regeneration and functional recovery of PNS and CNS in
    Wang Q; Fan H; Li F; Skeeters SS; Krishnamurthy VV; Song Y; Zhang K
    Elife; 2020 Oct; 9():. PubMed ID: 33021199
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Current Review of Optical Neural Interfaces for Clinical Applications.
    Park Y; Park SY; Eom K
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442547
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spatio-temporal control of neural activity in vivo using fluorescence microendoscopy.
    Hayashi Y; Tagawa Y; Yawata S; Nakanishi S; Funabiki K
    Eur J Neurosci; 2012 Sep; 36(6):2722-32. PubMed ID: 22780218
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Holographically patterned activation using photo-absorber induced neural-thermal stimulation.
    Farah N; Zoubi A; Matar S; Golan L; Marom A; Butson CR; Brosh I; Shoham S
    J Neural Eng; 2013 Oct; 10(5):056004. PubMed ID: 23902876
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications.
    Wu F; Stark E; Im M; Cho IJ; Yoon ES; Buzsáki G; Wise KD; Yoon E
    J Neural Eng; 2013 Oct; 10(5):056012. PubMed ID: 23985803
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Compact Optical Nerve Cuff Electrode for Simultaneous Neural Activity Monitoring and Optogenetic Stimulation of Peripheral Nerves.
    Song KI; Park SE; Lee S; Kim H; Lee SH; Youn I
    Sci Rep; 2018 Oct; 8(1):15630. PubMed ID: 30353118
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Opto- μECoG array: a hybrid neural interface with transparent μECoG electrode array and integrated LEDs for optogenetics.
    Kwon KY; Sirowatka B; Weber A; Li W
    IEEE Trans Biomed Circuits Syst; 2013 Oct; 7(5):593-600. PubMed ID: 24144668
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.