These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 34865578)

  • 1. Strategies for tailoring pH performances of glycoside hydrolases.
    Li SF; Cheng F; Wang YJ; Zheng YG
    Crit Rev Biotechnol; 2023 Feb; 43(1):121-141. PubMed ID: 34865578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating enzyme immobilization and protein engineering: An alternative path for the development of novel and improved industrial biocatalysts.
    Bernal C; Rodríguez K; Martínez R
    Biotechnol Adv; 2018; 36(5):1470-1480. PubMed ID: 29894813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deciphering the factors defining the pH-dependence of a commercial glycoside hydrolase family 8 enzyme.
    Barroca M; Santos G; Johansson B; Gillotin F; Feller G; Collins T
    Enzyme Microb Technol; 2017 Jan; 96():163-169. PubMed ID: 27871378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review of the principles and biotechnological applications of glycoside hydrolases from extreme environments.
    Ashcroft E; Munoz-Munoz J
    Int J Biol Macromol; 2024 Feb; 259(Pt 1):129227. PubMed ID: 38185295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes.
    Singh RK; Tiwari MK; Singh R; Lee JK
    Int J Mol Sci; 2013 Jan; 14(1):1232-77. PubMed ID: 23306150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immobilization of Glycoside Hydrolase Families GH1, GH13, and GH70: State of the Art and Perspectives.
    Graebin NG; Schöffer Jda N; Andrades Dd; Hertz PF; Ayub MA; Rodrigues RC
    Molecules; 2016 Aug; 21(8):. PubMed ID: 27548117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycoside Hydrolases and Glycosyltransferases from Hyperthermophilic Archaea: Insights on Their Characteristics and Applications in Biotechnology.
    Amin K; Tranchimand S; Benvegnu T; Abdel-Razzak Z; Chamieh H
    Biomolecules; 2021 Oct; 11(11):. PubMed ID: 34827555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein Engineering Strategies for Tailoring the Physical and Catalytic Properties of Enzymes for Defined Industrial Applications.
    Kumar R; Kumar A; Kaur J
    Curr Protein Pept Sci; 2023; 24(2):113-129. PubMed ID: 36627776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and Properties of an Immobilization Enzyme System for Inulin Conversion.
    Hang H; Wang C; Cheng Y; Li N; Song L
    Appl Biochem Biotechnol; 2018 Feb; 184(2):453-470. PubMed ID: 28735417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directed evolution of industrial enzymes: an update.
    Cherry JR; Fidantsef AL
    Curr Opin Biotechnol; 2003 Aug; 14(4):438-43. PubMed ID: 12943855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Concentrated Salts Solutions on the Stability of Immobilized Enzymes: Influence of Inactivation Conditions and Immobilization Protocol.
    Braham SA; Siar EH; Arana-Peña S; Carballares D; Morellon-Sterling R; Bavandi H; de Andrades D; Kornecki JF; Fernandez-Lafuente R
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33673063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inulinase immobilization on macroporous anion-exchange resins by different methods.
    Kovaleva TA; Holyavka MG; Bogdanova SS
    Bull Exp Biol Med; 2009 Jul; 148(1):39-41. PubMed ID: 19902092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon nanotubes as supports for inulinase immobilization.
    Garlet TB; Weber CT; Klaic R; Foletto EL; Jahn SL; Mazutti MA; Kuhn RC
    Molecules; 2014 Sep; 19(9):14615-24. PubMed ID: 25225722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genus Thermotoga: A valuable home of multifunctional glycoside hydrolases (GHs) for industrial sustainability.
    Akram F; Haq IU; Shah FI; Aqeel A; Ahmed Z; Mir AS; Qureshi SS; Raja SI
    Bioorg Chem; 2022 Oct; 127():105942. PubMed ID: 35709577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational protein design for thermostabilization of glycoside hydrolases based on structural analysis.
    Watanabe M; Matsuzawa T; Yaoi K
    Appl Microbiol Biotechnol; 2018 Oct; 102(20):8677-8684. PubMed ID: 30109396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The effect of urea, gamma- and UV-irradiation on physico-chemical characteristics of native and immobilized inulinase].
    Kovaleva TA; Kozhokina OM; Trofimova OD
    Radiats Biol Radioecol; 2000; 40(1):23-7. PubMed ID: 10778430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acid-resistant enzymes: the acquisition strategies and applications.
    Zhang Z; Zhao Z; Huang K; Liang Z
    Appl Microbiol Biotechnol; 2023 Oct; 107(20):6163-6178. PubMed ID: 37615723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Structural and functional properties of inulinases. Ways to regulate their activity].
    Artiukhov VG; Kholiavka MG; Kovaleva TA
    Biofizika; 2013; 58(4):635-44. PubMed ID: 24455883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biotechnology and bioengineering of pullulanase: state of the art and perspectives.
    Xu P; Zhang SY; Luo ZG; Zong MH; Li XX; Lou WY
    World J Microbiol Biotechnol; 2021 Feb; 37(3):43. PubMed ID: 33547538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-Point Covalent Immobilization of Enzymes on Glyoxyl Agarose with Minimal Physico-Chemical Modification: Stabilization of Industrial Enzymes.
    López-Gallego F; Fernandez-Lorente G; Rocha-Martín J; Bolivar JM; Mateo C; Guisan JM
    Methods Mol Biol; 2020; 2100():93-107. PubMed ID: 31939117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.