BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 34865754)

  • 1. Fusion of maltooligosaccharide-forming amylases from two origins for the improvement of maltopentaose synthesis.
    Han X; Ding N; Ban X; Gu Z; Cheng L; Hong Y; Li C; Li Z
    Food Res Int; 2021 Dec; 150(Pt A):110735. PubMed ID: 34865754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Starch-Binding Domain Modulates the Specificity of Maltopentaose Production at Moderate Temperatures.
    Ding N; Zhao B; Han X; Li C; Gu Z; Li Z
    J Agric Food Chem; 2022 Jul; 70(29):9057-9065. PubMed ID: 35829707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maltooligosaccharide-forming amylase: Characteristics, preparation, and application.
    Pan S; Ding N; Ren J; Gu Z; Li C; Hong Y; Cheng L; Holler TP; Li Z
    Biotechnol Adv; 2017 Sep; 35(5):619-632. PubMed ID: 28457999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-Based Engineering of a Maltooligosaccharide-Forming Amylase To Enhance Product Specificity.
    Xie X; Ban X; Gu Z; Li C; Hong Y; Cheng L; Li Z
    J Agric Food Chem; 2020 Jan; 68(3):838-844. PubMed ID: 31896254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of Trp139 in the product specificity of a maltooligosaccharide-forming amylase from Bacillus stearothermophilus STB04.
    Xie X; Qiu G; Zhang Z; Ban X; Gu Z; Li C; Hong Y; Cheng L; Li Z
    Appl Microbiol Biotechnol; 2019 Dec; 103(23-24):9433-9442. PubMed ID: 31676918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium and sodium ions synergistically enhance the thermostability of a maltooligosaccharide-forming amylase from Bacillus stearothermophilus STB04.
    Pan S; Gu Z; Ding N; Zhang Z; Chen D; Li C; Hong Y; Cheng L; Li Z
    Food Chem; 2019 Jun; 283():170-176. PubMed ID: 30722857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the thermostability and product specificity of a maltooligosaccharide-forming amylase from Bacillus stearothermophilus STB04.
    Xie X; Ban X; Gu Z; Li C; Hong Y; Cheng L; Li Z
    Biotechnol Lett; 2020 Feb; 42(2):295-303. PubMed ID: 31792661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbohydrate-Binding Module and Linker Allow Cold Adaptation and Salt Tolerance of Maltopentaose-Forming Amylase From Marine Bacterium
    Ding N; Zhao B; Ban X; Li C; Venkataram Prasad BV; Gu Z; Li Z
    Front Microbiol; 2021; 12():708480. PubMed ID: 34335544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving the Product Specificity of Maltotetraose-Forming Amylase from
    Duan K; Ban X; Wang Y; Li C; Gu Z; Li Z
    J Agric Food Chem; 2022 Oct; 70(42):13709-13718. PubMed ID: 36238980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Action of human pancreatic and salivary alpha-amylases on maltooligosaccharides: evaluation of kinetic parameters.
    Saito N; Horiuchi T; Yoshida M; Imai T
    Clin Chim Acta; 1979 Oct; 97(2-3):253-60. PubMed ID: 385176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel low temperature active maltooligosaccharides-forming amylase from
    Lekakarn H; Bunterngsook B; Pajongpakdeekul N; Prongjit D; Champreda V
    3 Biotech; 2022 Jun; 12(6):134. PubMed ID: 35615748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and characterization of maltooligosaccharide-forming amylase from Bacillus circulans GRS 313.
    Dey G; Palit S; Banerjee R; Maiti BR
    J Ind Microbiol Biotechnol; 2002 Apr; 28(4):193-200. PubMed ID: 11986918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and characterization of a maltooligosaccharide-forming amylase that improves product selectivity in water-miscible organic solvents, from dimethylsulfoxide-tolerant Brachybacterium sp. strain LB25.
    Doukyu N; Yamagishi W; Kuwahara H; Ogino H; Furuki N
    Extremophiles; 2007 Nov; 11(6):781-8. PubMed ID: 17619813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of maltotetraose-forming amylase from Pseudomonas saccharophila STB07 provides insights into its product specificity.
    Zhang Z; Jin T; Xie X; Ban X; Li C; Hong Y; Cheng L; Gu Z; Li Z
    Int J Biol Macromol; 2020 Jul; 154():1303-1313. PubMed ID: 31751711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of a maltooligosaccharide-forming amylase from Bacillus stearothermophilus STB04.
    Xie X; Li Y; Ban X; Zhang Z; Gu Z; Li C; Hong Y; Cheng L; Jin T; Li Z
    Int J Biol Macromol; 2019 Oct; 138():394-402. PubMed ID: 31325505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maltooligosaccharide forming amylases and their applications in food and pharma industry.
    Shinde VK; Vamkudoth KR
    J Food Sci Technol; 2022 Oct; 59(10):3733-3744. PubMed ID: 36193376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermostability enhancement and change in starch hydrolysis profile of the maltohexaose-forming amylase of Bacillus stearothermophilus US100 strain.
    Ben Ali M; Khemakhem B; Robert X; Haser R; Bejar S
    Biochem J; 2006 Feb; 394(Pt 1):51-6. PubMed ID: 16197365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. alpha-Amylase determination using maltopentaose as substrate.
    Larsen K
    J Clin Chem Clin Biochem; 1983 Jan; 21(1):45-52. PubMed ID: 6189958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneously Improved Thermostability and Hydrolytic Pattern of Alpha-Amylase by Engineering Central Beta Strands of TIM Barrel.
    Wang CH; Lu LH; Huang C; He BF; Huang RB
    Appl Biochem Biotechnol; 2020 Sep; 192(1):57-70. PubMed ID: 32219624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the role of a mobile loop in substrate binding and enzyme activity of human salivary amylase.
    Ramasubbu N; Ragunath C; Mishra PJ
    J Mol Biol; 2003 Jan; 325(5):1061-76. PubMed ID: 12527308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.