BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 34865772)

  • 1. Development of multi-species biofilm formed by thermophilic bacteria on stainless steel immerged in skimmed milk.
    Wang N; Jin Y; He G; Yuan L
    Food Res Int; 2021 Dec; 150(Pt A):110754. PubMed ID: 34865772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Propensity for biofilm formation by aerobic mesophilic and thermophilic spore forming bacteria isolated from Chinese milk powders.
    Sadiq FA; Flint S; Yuan L; Li Y; Liu T; He G
    Int J Food Microbiol; 2017 Dec; 262():89-98. PubMed ID: 28968534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The growth of Bacillus stearothermophilus on stainless steel.
    Flint S; Palmer J; Bloemen K; Brooks J; Crawford R
    J Appl Microbiol; 2001 Feb; 90(2):151-7. PubMed ID: 11168716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intraspecific and interspecific extracellular metabolites remodel biofilms formed by thermophilic spoilage bacteria.
    Wang N; Jin Y; He G; Yuan L
    J Appl Microbiol; 2022 Oct; 133(4):2096-2106. PubMed ID: 34689405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel hyperthermoacidic archaeal enzymes for removal of thermophilic biofilms from stainless steel.
    Nam Y; Barnebey A; Kim HK; Yannone SM; Flint S
    J Appl Microbiol; 2023 Jun; 134(6):. PubMed ID: 37218716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of risk areas in dairy powder processes: The development of thermophilic spore forming bacteria taking into account their growth limits.
    Louis D; Florence P; Ivan L; Anne-Gabrielle M
    Int J Food Microbiol; 2024 Jun; 418():110716. PubMed ID: 38669747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical Models for the Biofilm Formation of
    Karaca B; Buzrul S; Cihan AC
    Food Sci Anim Resour; 2021 Mar; 41(2):288-299. PubMed ID: 33987549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of thermophilic bacilli from a milk powder processing plant.
    Burgess SA; Flint SH; Lindsay D
    J Appl Microbiol; 2014 Feb; 116(2):350-9. PubMed ID: 24119100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the incubation temperature and total dissolved solids concentration on the biofilm and spore formation of dairy isolates of
    Kumar M; Flint S; Palmer J; Chanapha S; Hall C
    Appl Environ Microbiol; 2021 Apr; 87(8):. PubMed ID: 33547059
    [No Abstract]   [Full Text] [Related]  

  • 10.
    Karaca B; Buzrul S; Coleri Cihan A
    Biofouling; 2019 May; 35(5):551-560. PubMed ID: 31273998
    [No Abstract]   [Full Text] [Related]  

  • 11. A RAPD-based comparison of thermophilic bacilli from milk powders.
    Ronimus RS; Parker LE; Turner N; Poudel S; Rückert A; Morgan HW
    Int J Food Microbiol; 2003 Aug; 85(1-2):45-61. PubMed ID: 12810270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incidence of Bacillus cereus, Bacillus sporothermodurans and Geobacillus stearothermophilus in ultra-high temperature milk and biofilm formation capacity of isolates.
    Alonso VPP; de Oliveira Morais J; Kabuki DY
    Int J Food Microbiol; 2021 Sep; 354():109318. PubMed ID: 34246014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biofilm formation by heat-resistant dairy bacteria: multispecies biofilm model under static and dynamic conditions.
    Diarra C; Goetz C; Gagnon M; Roy D; Jean J
    Appl Environ Microbiol; 2023 Oct; 89(10):e0071323. PubMed ID: 37732743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a Multiplex-PCR assay for the rapid identification of Geobacillus stearothermophilus and Anoxybacillus flavithermus.
    Pennacchia C; Breeuwer P; Meyer R
    Food Microbiol; 2014 Oct; 43():41-9. PubMed ID: 24929881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolomics profiling during biofilm development of Bacillus licheniformis isolated from milk powder.
    Wang N; Gao J; Yuan L; Jin Y; He G
    Int J Food Microbiol; 2021 Jan; 337():108939. PubMed ID: 33160113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preconditioning with cations increases the attachment of Anoxybacillus flavithermus and Geobacillus species to stainless steel.
    Somerton B; Flint S; Palmer J; Brooks J; Lindsay D
    Appl Environ Microbiol; 2013 Jul; 79(13):4186-90. PubMed ID: 23645192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RAPD-based screening for spore-forming bacterial populations in Uruguayan commercial powdered milk.
    Reginensi SM; González MJ; Olivera JA; Sosa M; Juliano P; Bermúdez J
    Int J Food Microbiol; 2011 Jul; 148(1):36-41. PubMed ID: 21565415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tracking spore-forming bacteria in food: from natural biodiversity to selection by processes.
    Postollec F; Mathot AG; Bernard M; Divanac'h ML; Pavan S; Sohier D
    Int J Food Microbiol; 2012 Aug; 158(1):1-8. PubMed ID: 22795797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of modified stainless steel surfaces targeted to reduce biofilm formation by common milk sporeformers.
    Jindal S; Anand S; Huang K; Goddard J; Metzger L; Amamcharla J
    J Dairy Sci; 2016 Dec; 99(12):9502-9513. PubMed ID: 27692715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A systematic characterization of the distribution, biofilm-forming potential and the resistance of the biofilms to the CIP processes of the bacteria in a milk powder processing factory.
    Zou M; Liu D
    Food Res Int; 2018 Nov; 113():316-326. PubMed ID: 30195526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.