BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 34866117)

  • 1. Polylactic acid as a biocompatible polymer for three-dimensional printing of interim prosthesis: Mechanical characterization.
    Crenn MJ; Rohman G; Fromentin O; Benoit A
    Dent Mater J; 2022 Feb; 41(1):110-116. PubMed ID: 34866117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid Fabrication of Anatomically-Shaped Bone Scaffolds Using Indirect 3D Printing and Perfusion Techniques.
    Grottkau BE; Hui Z; Yao Y; Pang Y
    Int J Mol Sci; 2020 Jan; 21(1):. PubMed ID: 31906530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional printing of temporary crowns with polylactic acid polymer using the fused deposition modeling technique: a case series.
    Kim EK; Park EY; Kang S
    J Yeungnam Med Sci; 2023 Jul; 40(3):302-307. PubMed ID: 36329660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical properties of CAD/CAM polylactic acid as a material for interim restoration.
    Choi WI; Yoo LG; Kim YR; Jung BY
    Heliyon; 2023 Apr; 9(4):e15314. PubMed ID: 37095924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Rice Straw Powder (RSP) Size and Pretreatment on Properties of FDM 3D-Printed RSP/Poly(Lactic Acid) Biocomposites.
    Yu W; Dong L; Lei W; Zhou Y; Pu Y; Zhang X
    Molecules; 2021 May; 26(11):. PubMed ID: 34072204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Printing Parameters on Properties of FDM 3D Printed Residue of Astragalus/Polylactic Acid Biomass Composites.
    Yu W; Shi J; Sun L; Lei W
    Molecules; 2022 Oct; 27(21):. PubMed ID: 36364199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-Dimensional (3D) Printing of Polymer-Metal Hybrid Materials by Fused Deposition Modeling.
    Fafenrot S; Grimmelsmann N; Wortmann M; Ehrmann A
    Materials (Basel); 2017 Oct; 10(10):. PubMed ID: 29048347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique].
    Lian Q; Zhuang P; Li C; Jin Z; Li D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphology and Mechanical Properties of 3D Printed Wood Fiber/Polylactic Acid Composite Parts Using Fused Deposition Modeling (FDM): The Effects of Printing Speed.
    Yang TC; Yeh CH
    Polymers (Basel); 2020 Jun; 12(6):. PubMed ID: 32545359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Quantitative evaluation of printing accuracy and tissue surface adaptation of mandibular complete denture polylactic acid pattern fabricated by fused deposition modeling technology].
    Deng KH; Wang Y; Chen H; Zhao YJ; Zhou YS; Sun YC
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2017 Jun; 52(6):342-345. PubMed ID: 28613054
    [No Abstract]   [Full Text] [Related]  

  • 12. Effect of Porosity and Crystallinity on 3D Printed PLA Properties.
    Liao Y; Liu C; Coppola B; Barra G; Di Maio L; Incarnato L; Lafdi K
    Polymers (Basel); 2019 Sep; 11(9):. PubMed ID: 31547357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimisation of the additive manufacturing parameters of polylactic acid (PLA) cellular structures for biomedical applications.
    Myers D; Abdel-Wahab A; Hafeez F; Kovacev N; Essa K
    J Mech Behav Biomed Mater; 2022 Dec; 136():105447. PubMed ID: 36272224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical porosity in additively manufactured bioengineering scaffolds: Fabrication & characterisation.
    Shalchy F; Lovell C; Bhaskar A
    J Mech Behav Biomed Mater; 2020 Oct; 110():103968. PubMed ID: 32745973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Wood Flour (WF) Pretreatment and the Addition of a Toughening Agent on the Properties of FDM 3D-Printed WF/Poly(lactic acid) Biocomposites.
    Yu W; Li M; Lei W; Pu Y; Sun K; Ma Y
    Molecules; 2022 May; 27(9):. PubMed ID: 35566335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and Characterization of Poly(butylene succinate)/Polylactide Blends for Fused Deposition Modeling 3D Printing.
    Ou-Yang Q; Guo B; Xu J
    ACS Omega; 2018 Oct; 3(10):14309-14317. PubMed ID: 31458121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing.
    Giordano RA; Wu BM; Borland SW; Cima LG; Sachs EM; Cima MJ
    J Biomater Sci Polym Ed; 1996; 8(1):63-75. PubMed ID: 8933291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of polylactic acid (PLA)-based porous scaffold through the combination of traditional bio-fabrication and 3D printing technology for bone regeneration.
    Zhou X; Zhou G; Junka R; Chang N; Anwar A; Wang H; Yu X
    Colloids Surf B Biointerfaces; 2021 Jan; 197():111420. PubMed ID: 33113493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polylactic Acid as a Material for Three-Dimensional Printing of Provisional Restorations.
    Molinero-Mourelle P; Canals S; Gómez-Polo M; Solá-Ruiz MF; Del Río Highsmith J; Viñuela AC
    Int J Prosthodont; 2018; 31(4):349-350. PubMed ID: 29953566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of the morphology and dimensional accuracy of 3D printed PLA and PLA/HAp scaffolds.
    Gendviliene I; Simoliunas E; Rekstyte S; Malinauskas M; Zaleckas L; Jegelevicius D; Bukelskiene V; Rutkunas V
    J Mech Behav Biomed Mater; 2020 Apr; 104():103616. PubMed ID: 31929097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.