BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34866295)

  • 1. One-Pot Construction of Sulfur-Rich Thermoplastic Elastomers Enabled by Metal-Free Self-Switchable Catalysis and Air-Assisted Coupling.
    Zhu XF; Yang GW; Xie R; Wu GP
    Angew Chem Int Ed Engl; 2022 Feb; 61(7):e202115189. PubMed ID: 34866295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneously Healable Thermoplastic Elastomers Achieved through One-Pot Living Ring-Opening Metathesis Copolymerization of Well-Designed Bulky Monomers.
    Yang JX; Long YY; Pan L; Men YF; Li YS
    ACS Appl Mater Interfaces; 2016 May; 8(19):12445-55. PubMed ID: 27136676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triblock polyester thermoplastic elastomers with semi-aromatic polymer end blocks by ring-opening copolymerization.
    Gregory GL; Sulley GS; Carrodeguas LP; Chen TTD; Santmarti A; Terrill NJ; Lee KY; Williams CK
    Chem Sci; 2020 May; 11(25):6567-6581. PubMed ID: 34094122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precisely Alternating Copolymerization of Episulfides and Isothiocyanates: A Practical Route to Construct Sulfur-Rich Polymers.
    Zhu XF; Xie R; Yang GW; Lu XY; Wu GP
    ACS Macro Lett; 2021 Jan; 10(1):135-140. PubMed ID: 35548986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using Redox-Switchable Polymerization Catalysis to Synthesize a Chemically Recyclable Thermoplastic Elastomer.
    Liu J; Blosch SE; Volokhova AS; Crater ER; Gallin CF; Moore RB; Matson JB; Byers JA
    Angew Chem Int Ed Engl; 2024 Feb; 63(6):e202317699. PubMed ID: 38168073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen-Triggered Switchable Polymerization for the One-Pot Synthesis of CO
    Zhao Y; Wang Y; Zhou X; Xue Z; Wang X; Xie X; Poli R
    Angew Chem Int Ed Engl; 2019 Oct; 58(40):14311-14318. PubMed ID: 31282122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Block Poly(carbonate-ester) Ionomers as High-Performance and Recyclable Thermoplastic Elastomers.
    Gregory GL; Sulley GS; Kimpel J; Łagodzińska M; Häfele L; Carrodeguas LP; Williams CK
    Angew Chem Int Ed Engl; 2022 Nov; 61(47):e202210748. PubMed ID: 36178774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precision synthesis of bio-based acrylic thermoplastic elastomer by RAFT polymerization of itaconic acid derivatives.
    Satoh K; Lee DH; Nagai K; Kamigaito M
    Macromol Rapid Commun; 2014 Jan; 35(2):161-167. PubMed ID: 24243816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid and Controlled Polymerization of Bio-sourced δ-Caprolactone toward Fully Recyclable Polyesters and Thermoplastic Elastomers.
    Li C; Wang L; Yan Q; Liu F; Shen Y; Li Z
    Angew Chem Int Ed Engl; 2022 Apr; 61(16):e202201407. PubMed ID: 35150037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tandem metal-coordination copolymerization and organocatalytic ring-opening polymerization via water to synthesize diblock copolymers of styrene oxide/CO2 and lactide.
    Wu GP; Darensbourg DJ; Lu XB
    J Am Chem Soc; 2012 Oct; 134(42):17739-45. PubMed ID: 23016983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A One-Pot Strategy to Synthesize Block Copolyesters from Monomer Mixtures Using a Hydroxy-Functionized Ionic Liquid.
    Song P; Chen Y; Li Y; Ma J; Wang L; Wang R
    Macromol Rapid Commun; 2020 Dec; 41(23):e2000436. PubMed ID: 33052626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Switchable Polymerization Organocatalysis: From Monomer Mixtures to Block Copolymers.
    Tang J; Li M; Wang X; Tao Y
    Angew Chem Int Ed Engl; 2022 Apr; 61(15):e202115465. PubMed ID: 35107197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Switchable Polymerization Triggered by Fast and Quantitative Insertion of Carbon Monoxide into Cobalt-Oxygen Bonds.
    Wang Y; Zhao Y; Zhu S; Zhou X; Xu J; Xie X; Poli R
    Angew Chem Int Ed Engl; 2020 Apr; 59(15):5988-5994. PubMed ID: 32017360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-Step Access to Sequence-Controlled Block Copolymers by Self-Switchable Organocatalytic Multicomponent Polymerization.
    Ji HY; Wang B; Pan L; Li YS
    Angew Chem Int Ed Engl; 2018 Dec; 57(51):16888-16892. PubMed ID: 30417592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aliphatic polyester block polymers: renewable, degradable, and sustainable.
    Hillmyer MA; Tolman WB
    Acc Chem Res; 2014 Aug; 47(8):2390-6. PubMed ID: 24852135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective Polymerization Catalysis from Monomer Mixtures: Using a Commercial Cr-Salen Catalyst To Access ABA Block Polyesters.
    Stößer T; Williams CK
    Angew Chem Int Ed Engl; 2018 May; 57(21):6337-6341. PubMed ID: 29518288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-Step Synthesis of Lignin-Based Triblock Copolymers as High-Temperature and UV-Blocking Thermoplastic Elastomers.
    Wan Y; He J; Zhang Y; Chen EY
    Angew Chem Int Ed Engl; 2022 Feb; 61(8):e202114946. PubMed ID: 34904337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sustainable Elastomers from Renewable Biomass.
    Wang Z; Yuan L; Tang C
    Acc Chem Res; 2017 Jul; 50(7):1762-1773. PubMed ID: 28636365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combination of episulfide ring-opening polymerization with ATRP for the preparation of amphiphilic block copolymers.
    Vo CD; Cadman CJ; Donno R; Goos JA; Tirelli N
    Macromol Rapid Commun; 2013 Jan; 34(2):156-62. PubMed ID: 23319175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Renewable-resource thermoplastic elastomers based on polylactide and polymenthide.
    Wanamaker CL; O'Leary LE; Lynd NA; Hillmyer MA; Tolman WB
    Biomacromolecules; 2007 Nov; 8(11):3634-40. PubMed ID: 17960909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.