These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 34866378)

  • 1. Crystallization from a Droplet: Single-Crystalline Arrays and Heterojunctions for Organic Electronics.
    Peng B; Wu R; Li H
    Acc Chem Res; 2021 Dec; 54(24):4498-4507. PubMed ID: 34866378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organic Heterojunctions Formed by Interfacing Two Single Crystals from a Mixed Solution.
    Li H; Wu J; Takahashi K; Ren J; Wu R; Cai H; Wang J; Xin HL; Miao Q; Yamada H; Chen H; Li H
    J Am Chem Soc; 2019 Jun; 141(25):10007-10015. PubMed ID: 31244137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Engineering of Printed Semiconducting Blends to Develop Organic Integrated Circuits: Crystallization, Charge Transport, and Device Application Analyses.
    Kwon HJ; Tang X; Kim S; Li Z; Wang R; Park BH; Kim C; Kim S; Hong J; Ryu KY; Choi HH; An TK; Lee J; Kim SH
    ACS Appl Mater Interfaces; 2022 May; ():. PubMed ID: 35544719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organic Single-Crystalline p-n Heterojunctions for High-Performance Ambipolar Field-Effect Transistors and Broadband Photodetectors.
    Zhao X; Liu T; Liu H; Wang S; Li X; Zhang Y; Hou X; Liu Z; Shi W; Dennis TJS
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42715-42722. PubMed ID: 30398337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow-Directed Crystallization for Printed Electronics.
    Qu G; Kwok JJ; Diao Y
    Acc Chem Res; 2016 Dec; 49(12):2756-2764. PubMed ID: 27993010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charge-Transfer-Controlled Growth of Organic Semiconductor Crystals on Graphene.
    Nguyen NN; Lee HC; Yoo MS; Lee E; Lee H; Lee SB; Cho K
    Adv Sci (Weinh); 2020 Mar; 7(6):1902315. PubMed ID: 32195079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scalable Fabrication of Highly Crystalline Organic Semiconductor Thin Film by Channel-Restricted Screen Printing toward the Low-Cost Fabrication of High-Performance Transistor Arrays.
    Duan S; Gao X; Wang Y; Yang F; Chen M; Zhang X; Ren X; Hu W
    Adv Mater; 2019 Apr; 31(16):e1807975. PubMed ID: 30828885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution-grown organic single-crystalline donor-acceptor heterojunctions for photovoltaics.
    Li H; Fan C; Fu W; Xin HL; Chen H
    Angew Chem Int Ed Engl; 2015 Jan; 54(3):956-60. PubMed ID: 25425485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro- and nanocrystals of organic semiconductors.
    Li R; Hu W; Liu Y; Zhu D
    Acc Chem Res; 2010 Apr; 43(4):529-40. PubMed ID: 20067223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. van der Waals Epitaxy of Organic Semiconductor Thin Films on Atomically Thin Graphene Templates for Optoelectronic Applications.
    Nguyen NN; Lee H; Lee HC; Cho K
    Acc Chem Res; 2022 Mar; 55(5):673-684. PubMed ID: 35142485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organic Donor-Acceptor Complexes as Novel Organic Semiconductors.
    Zhang J; Xu W; Sheng P; Zhao G; Zhu D
    Acc Chem Res; 2017 Jul; 50(7):1654-1662. PubMed ID: 28608673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Crystallization Modes in TIPS-pentacene/Insulating Polymer Blends on the Gas Sensing Properties of Organic Field-Effect Transistors.
    Lee JH; Seo Y; Park YD; Anthony JE; Kwak DH; Lim JA; Ko S; Jang HW; Cho K; Lee WH
    Sci Rep; 2019 Jan; 9(1):21. PubMed ID: 30631121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capillary-Confinement Crystallization for Monolayer Molecular Crystal Arrays.
    Liu J; Yu Y; Liu J; Li T; Li C; Zhang J; Hu W; Liu Y; Jiang L
    Adv Mater; 2022 Feb; 34(7):e2107574. PubMed ID: 34837661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrogen-Containing Perylene Diimides: Molecular Design, Robust Aggregated Structures, and Advances in n-Type Organic Semiconductors.
    Kumagai S; Ishii H; Watanabe G; Yu CP; Watanabe S; Takeya J; Okamoto T
    Acc Chem Res; 2022 Mar; 55(5):660-672. PubMed ID: 35157436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of Single-Crystalline Heterojunctions for Organic Electronics.
    Wu J; Li Q; Xue G; Chen H; Li H
    Adv Mater; 2017 Apr; 29(14):. PubMed ID: 28234418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge Transport in Organic Semiconductors: The Perspective from Nonadiabatic Molecular Dynamics.
    Giannini S; Blumberger J
    Acc Chem Res; 2022 Mar; 55(6):819-830. PubMed ID: 35196456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Super- and Ferroelastic Organic Semiconductors for Ultraflexible Single-Crystal Electronics.
    Park SK; Sun H; Chung H; Patel BB; Zhang F; Davies DW; Woods TJ; Zhao K; Diao Y
    Angew Chem Int Ed Engl; 2020 Jul; 59(31):13004-13012. PubMed ID: 32342626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-mobility field-effect transistors from large-area solution-grown aligned C60 single crystals.
    Li H; Tee BC; Cha JJ; Cui Y; Chung JW; Lee SY; Bao Z
    J Am Chem Soc; 2012 Feb; 134(5):2760-5. PubMed ID: 22239604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymorph farming of acetaminophen and sulfathiazole on a chip.
    Lee T; Hung ST; Kuo CS
    Pharm Res; 2006 Nov; 23(11):2542-55. PubMed ID: 16969701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laterally-stacked, solution-processed organic microcrystal with ambipolar charge transport behavior.
    Shim H; Kumar A; Cho H; Yang D; Palai AK; Pyo S
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17804-14. PubMed ID: 25244525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.