BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 34866384)

  • 1. MoleGuLAR: Molecule Generation Using Reinforcement Learning with Alternating Rewards.
    Goel M; Raghunathan S; Laghuvarapu S; Priyakumar UD
    J Chem Inf Model; 2021 Dec; 61(12):5815-5826. PubMed ID: 34866384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo drug design based on Stack-RNN with multi-objective reward-weighted sum and reinforcement learning.
    Hu P; Zou J; Yu J; Shi S
    J Mol Model; 2023 Mar; 29(4):121. PubMed ID: 36991180
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Domenico A; Nicola G; Daniela T; Fulvio C; Nicola A; Orazio N
    J Chem Inf Model; 2020 Oct; 60(10):4582-4593. PubMed ID: 32845150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep reinforcement learning for de novo drug design.
    Popova M; Isayev O; Tropsha A
    Sci Adv; 2018 Jul; 4(7):eaap7885. PubMed ID: 30050984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Memory augmented recurrent neural networks for de-novo drug design.
    Suresh N; Chinnakonda Ashok Kumar N; Subramanian S; Srinivasa G
    PLoS One; 2022; 17(6):e0269461. PubMed ID: 35737661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GRELinker: A Graph-Based Generative Model for Molecular Linker Design with Reinforcement and Curriculum Learning.
    Zhang H; Huang J; Xie J; Huang W; Yang Y; Xu M; Lei J; Chen H
    J Chem Inf Model; 2024 Feb; 64(3):666-676. PubMed ID: 38241022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generative and reinforcement learning approaches for the automated de novo design of bioactive compounds.
    Korshunova M; Huang N; Capuzzi S; Radchenko DS; Savych O; Moroz YS; Wells CI; Willson TM; Tropsha A; Isayev O
    Commun Chem; 2022 Oct; 5(1):129. PubMed ID: 36697952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magicmol: a light-weighted pipeline for drug-like molecule evolution and quick chemical space exploration.
    Chen L; Shen Q; Lou J
    BMC Bioinformatics; 2023 Apr; 24(1):173. PubMed ID: 37101113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De novo drug design by iterative multiobjective deep reinforcement learning with graph-based molecular quality assessment.
    Fang Y; Pan X; Shen HB
    Bioinformatics; 2023 Apr; 39(4):. PubMed ID: 36961341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The power of deep learning to ligand-based novel drug discovery.
    Baskin II
    Expert Opin Drug Discov; 2020 Jul; 15(7):755-764. PubMed ID: 32228116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generative Deep Learning for Targeted Compound Design.
    Sousa T; Correia J; Pereira V; Rocha M
    J Chem Inf Model; 2021 Nov; 61(11):5343-5361. PubMed ID: 34699719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FSM-DDTR: End-to-end feedback strategy for multi-objective De Novo drug design using transformers.
    Monteiro NRC; Pereira TO; Machado ACD; Oliveira JL; Abbasi M; Arrais JP
    Comput Biol Med; 2023 Sep; 164():107285. PubMed ID: 37557054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing blood-brain barrier permeation through deep reinforcement learning for de novo drug design.
    Pereira T; Abbasi M; Oliveira JL; Ribeiro B; Arrais J
    Bioinformatics; 2021 Jul; 37(Suppl_1):i84-i92. PubMed ID: 34252946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving drug discovery with a hybrid deep generative model using reinforcement learning trained on a Bayesian docking approximation.
    Xiong Y; Wang Y; Wang Y; Li C; Yusong P; Wu J; Wang Y; Gu L; Butch CJ
    J Comput Aided Mol Des; 2023 Nov; 37(11):507-517. PubMed ID: 37550462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LS-MolGen: Ligand-and-Structure Dual-Driven Deep Reinforcement Learning for Target-Specific Molecular Generation Improves Binding Affinity and Novelty.
    Li S; Hu C; Ke S; Yang C; Chen J; Xiong Y; Liu H; Hong L
    J Chem Inf Model; 2023 Jul; 63(13):4207-4215. PubMed ID: 37341350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DeepGraphMolGen, a multi-objective, computational strategy for generating molecules with desirable properties: a graph convolution and reinforcement learning approach.
    Khemchandani Y; O'Hagan S; Samanta S; Swainston N; Roberts TJ; Bollegala D; Kell DB
    J Cheminform; 2020 Sep; 12(1):53. PubMed ID: 33431037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Augmented Hill-Climb increases reinforcement learning efficiency for language-based de novo molecule generation.
    Thomas M; O'Boyle NM; Bender A; de Graaf C
    J Cheminform; 2022 Oct; 14(1):68. PubMed ID: 36192789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep inverse reinforcement learning for structural evolution of small molecules.
    Agyemang B; Wu WP; Addo D; Kpiebaareh MY; Nanor E; Roland Haruna C
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33348357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecule generation toward target protein (SARS-CoV-2) using reinforcement learning-based graph neural network via knowledge graph.
    Ranjan A; Kumar H; Kumari D; Anand A; Misra R
    Netw Model Anal Health Inform Bioinform; 2023; 12(1):13. PubMed ID: 36627927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ReGen-DTI: A novel generative drug target interaction model for predicting potential drug candidates against SARS-COV2.
    Sivangi KB; Amilpur S; Dasari CM
    Comput Biol Chem; 2023 Oct; 106():107927. PubMed ID: 37499436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.