These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 34866391)

  • 1. Dual-Material 3D-Printed Intestinal Model Devices with Integrated Villi-like Scaffolds.
    Taebnia N; Zhang R; Kromann EB; Dolatshahi-Pirouz A; Andresen TL; Larsen NB
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):58434-58446. PubMed ID: 34866391
    [No Abstract]   [Full Text] [Related]  

  • 2. Hydrogel co-networks of gelatine methacrylate and poly(ethylene glycol) diacrylate sustain 3D functional in vitro models of intestinal mucosa.
    Vila A; Torras N; Castaño AG; García-Díaz M; Comelles J; Pérez-Berezo T; Corregidor C; Castaño Ó; Engel E; Fernández-Majada V; Martínez E
    Biofabrication; 2020 Feb; 12(2):025008. PubMed ID: 31805546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of hydrogel scaffolds to develop an in vitro 3D culture model of human intestinal epithelium.
    Dosh RH; Essa A; Jordan-Mahy N; Sammon C; Le Maitre CL
    Acta Biomater; 2017 Oct; 62():128-143. PubMed ID: 28859901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of 3D scaffolds reproducing intestinal epithelium topography by high-resolution 3D stereolithography.
    Creff J; Courson R; Mangeat T; Foncy J; Souleille S; Thibault C; Besson A; Malaquin L
    Biomaterials; 2019 Nov; 221():119404. PubMed ID: 31419651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intestinal Villi Model with Blood Capillaries Fabricated Using Collagen-Based Bioink and Dual-Cell-Printing Process.
    Kim W; Kim G
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41185-41196. PubMed ID: 30419164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of GelMA/PCL and dECM/PCL resins for 3D printing of acellular in vitro tissue scaffolds by stereolithography.
    Elomaa L; Keshi E; Sauer IM; Weinhart M
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110958. PubMed ID: 32409091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogel-Integrated Millifluidic Systems: Advancing the Fabrication of Mucus-Producing Human Intestinal Models.
    Almalla A; Alzain N; Elomaa L; Richter F; Scholz J; Lindner M; Siegmund B; Weinhart M
    Cells; 2024 Jun; 13(13):. PubMed ID: 38994934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures.
    Hong S; Sycks D; Chan HF; Lin S; Lopez GP; Guilak F; Leong KW; Zhao X
    Adv Mater; 2015 Jul; 27(27):4035-40. PubMed ID: 26033288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel 3D-printed silk fibroin-based scaffold facilitates tracheal epithelium proliferation in vitro.
    Zhong N; Dong T; Chen Z; Guo Y; Shao Z; Zhao X
    J Biomater Appl; 2019 Jul; 34(1):3-11. PubMed ID: 31006317
    [No Abstract]   [Full Text] [Related]  

  • 10. The shape of our gut: Dissecting its impact on drug absorption in a 3D bioprinted intestinal model.
    Macedo MH; Torras N; García-Díaz M; Barrias C; Sarmento B; Martínez E
    Biomater Adv; 2023 Oct; 153():213564. PubMed ID: 37482042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An intestinal model with a finger-like villus structure fabricated using a bioprinting process and collagen/SIS-based cell-laden bioink.
    Kim W; Kim GH
    Theranostics; 2020; 10(6):2495-2508. PubMed ID: 32194815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly (ethylene glycol) hydrogel scaffolds with multiscale porosity for culture of human adipose-derived stem cells.
    Barnett HH; Heimbuck AM; Pursell I; Hegab RA; Sawyer BJ; Newman JJ; Caldorera-Moore ME
    J Biomater Sci Polym Ed; 2019 Aug; 30(11):895-918. PubMed ID: 31039085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D embedded bioprinting of large-scale intestine with complex structural organization and blood capillaries.
    Li Y; Cheng S; Shi H; Yuan R; Gao C; Wang Y; Zhang Z; Deng Z; Huang J
    Biofabrication; 2024 Jul; 16(4):. PubMed ID: 38914075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stereolithographic hydrogel printing of 3D culture chips with biofunctionalized complex 3D perfusion networks.
    Zhang R; Larsen NB
    Lab Chip; 2017 Dec; 17(24):4273-4282. PubMed ID: 29116271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micro-patterned endogenous stroma equivalent induces polarized crypt-villus architecture of human small intestinal epithelium.
    De Gregorio V; Imparato G; Urciuolo F; Netti PA
    Acta Biomater; 2018 Nov; 81():43-59. PubMed ID: 30282052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Printing: 3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures.
    Hong S; Sycks D; Chan HF; Lin S; Lopez GP; Guilak F; Leong KW; Zhao X
    Adv Mater; 2015 Jul; 27(27):4034. PubMed ID: 26172844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabricating gradient hydrogel scaffolds for 3D cell culture.
    Chatterjee K; Young MF; Simon CG
    Comb Chem High Throughput Screen; 2011 May; 14(4):227-36. PubMed ID: 21143178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D bioprinting of dual-crosslinked nanocellulose hydrogels for tissue engineering applications.
    Monfared M; Mawad D; Rnjak-Kovacina J; Stenzel MH
    J Mater Chem B; 2021 Aug; 9(31):6163-6175. PubMed ID: 34286810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Printed Pericardium Hydrogels To Promote Wound Healing in Vascular Applications.
    Bracaglia LG; Messina M; Winston S; Kuo CY; Lerman M; Fisher JP
    Biomacromolecules; 2017 Nov; 18(11):3802-3811. PubMed ID: 28976740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silk fibroin reactive inks for 3D printing crypt-like structures.
    Heichel DL; Tumbic JA; Boch ME; Ma AWK; Burke KA
    Biomed Mater; 2020 Sep; 15(5):055037. PubMed ID: 32924975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.