BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 34866573)

  • 1. The enteric pathogen
    Dumaine JE; Sateriale A; Gibson AR; Reddy AG; Gullicksrud JA; Hunter EN; Clark JT; Striepen B
    Elife; 2021 Dec; 10():. PubMed ID: 34866573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neonatal Mouse Gut Metabolites Influence Cryptosporidium parvum Infection in Intestinal Epithelial Cells.
    VanDussen KL; Funkhouser-Jones LJ; Akey ME; Schaefer DA; Ackman K; Riggs MW; Stappenbeck TS; Sibley LD
    mBio; 2020 Dec; 11(6):. PubMed ID: 33323514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryptosporidium parvum induces host cell actin accumulation at the host-parasite interface.
    Elliott DA; Clark DP
    Infect Immun; 2000 Apr; 68(4):2315-22. PubMed ID: 10722635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryptosporidium rhoptry effector protein ROP1 injected during invasion targets the host cytoskeletal modulator LMO7.
    Guérin A; Roy NH; Kugler EM; Berry L; Burkhardt JK; Shin JB; Striepen B
    Cell Host Microbe; 2021 Sep; 29(9):1407-1420.e5. PubMed ID: 34348092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of Inflammatory Responses in Splenocytes by Exosomes Released from Intestinal Epithelial Cells following
    Wang Y; Shen Y; Liu H; Yin J; Zhang XT; Gong AY; Chen X; Chen S; Mathy NW; Cao J; Chen XM
    Infect Immun; 2019 Apr; 87(4):. PubMed ID: 30642905
    [No Abstract]   [Full Text] [Related]  

  • 6. Characterization of MEDLE-1, a protein in early development of Cryptosporidium parvum.
    Fei J; Wu H; Su J; Jin C; Li N; Guo Y; Feng Y; Xiao L
    Parasit Vectors; 2018 May; 11(1):312. PubMed ID: 29792229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymorphic mucin antigens CpMuc4 and CpMuc5 are integral to Cryptosporidium parvum infection in vitro.
    O'Connor RM; Burns PB; Ha-Ngoc T; Scarpato K; Khan W; Kang G; Ward H
    Eukaryot Cell; 2009 Apr; 8(4):461-9. PubMed ID: 19168754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of CpSUB1, a subtilisin-like protease, in Cryptosporidium parvum infection in vitro.
    Wanyiri JW; Techasintana P; O'Connor RM; Blackman MJ; Kim K; Ward HD
    Eukaryot Cell; 2009 Apr; 8(4):470-7. PubMed ID: 19168760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cryptosporidium uses multiple distinct secretory organelles to interact with and modify its host cell.
    Guérin A; Strelau KM; Barylyuk K; Wallbank BA; Berry L; Crook OM; Lilley KS; Waller RF; Striepen B
    Cell Host Microbe; 2023 Apr; 31(4):650-664.e6. PubMed ID: 36958336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the host ranges and antigenicity of Cryptosporidium parvum and Cryptosporidium wrairi from guinea pigs.
    Chrisp CE; Suckow MA; Fayer R; Arrowood MJ; Healey MC; Sterling CR
    J Protozool; 1992; 39(3):406-9. PubMed ID: 1386385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryptosporidium excystation and invasion: getting to the guts of the matter.
    Smith HV; Nichols RA; Grimason AM
    Trends Parasitol; 2005 Mar; 21(3):133-42. PubMed ID: 15734661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bovine cryptosporidiosis: impact, host-parasite interaction and control strategies.
    Thomson S; Hamilton CA; Hope JC; Katzer F; Mabbott NA; Morrison LJ; Innes EA
    Vet Res; 2017 Aug; 48(1):42. PubMed ID: 28800747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative proteomics reveals Cryptosporidium parvum manipulation of the host cell molecular expression and immune response.
    Li T; Liu H; Jiang N; Wang Y; Wang Y; Zhang J; Shen Y; Cao J
    PLoS Negl Trop Dis; 2021 Nov; 15(11):e0009949. PubMed ID: 34818332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of Cryptosporidium parvum infection in immunocompetent and immunocompromised mice and its role in triggering intestinal dysplasia.
    Abdou AG; Harba NM; Afifi AF; Elnaidany NF
    Int J Infect Dis; 2013 Aug; 17(8):e593-600. PubMed ID: 23291034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative proteomics reveals Cryptosporidium parvum infection disrupts cellular barriers.
    Wang L; Cui Z; Li N; Liang G; Zhang X; Wang Y; Li D; Li X; Zhang S; Zhang L
    J Proteomics; 2023 Sep; 287():104969. PubMed ID: 37463621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome analysis of pig intestinal cell monolayers infected with Cryptosporidium parvum asexual stages.
    Mirhashemi ME; Noubary F; Chapman-Bonofiglio S; Tzipori S; Huggins GS; Widmer G
    Parasit Vectors; 2018 Mar; 11(1):176. PubMed ID: 29530089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cryptosporidium parvum.
    Dumaine JE; Tandel J; Striepen B
    Trends Parasitol; 2020 May; 36(5):485-486. PubMed ID: 31836286
    [No Abstract]   [Full Text] [Related]  

  • 18. Cryptosporidium parvum Elongation Factor 1α Participates in the Formation of Base Structure at the Infection Site During Invasion.
    Yu X; Guo F; Mouneimne RB; Zhu G
    J Infect Dis; 2020 May; 221(11):1816-1825. PubMed ID: 31872225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Host intestinal epithelial response to Cryptosporidium parvum.
    Deng M; Rutherford MS; Abrahamsen MS
    Adv Drug Deliv Rev; 2004 Apr; 56(6):869-84. PubMed ID: 15063595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interferon-λ3 Promotes Epithelial Defense and Barrier Function Against Cryptosporidium parvum Infection.
    Ferguson SH; Foster DM; Sherry B; Magness ST; Nielsen DM; Gookin JL
    Cell Mol Gastroenterol Hepatol; 2019; 8(1):1-20. PubMed ID: 30849550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.