BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 34866627)

  • 1. In Vitro and In Vivo Methods to Explore Megakaryopoiesis.
    Lanza F; Gachet C; Eckly A
    J Vis Exp; 2021 Nov; (177):. PubMed ID: 34866627
    [No Abstract]   [Full Text] [Related]  

  • 2. Dual role of IL-21 in megakaryopoiesis and platelet homeostasis.
    Benbarche S; Strassel C; Angénieux C; Mallo L; Freund M; Gachet C; Lanza F; de la Salle H
    Haematologica; 2017 Apr; 102(4):637-646. PubMed ID: 28057742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrinsic impaired proplatelet formation and microtubule coil assembly of megakaryocytes in a mouse model of Bernard-Soulier syndrome.
    Strassel C; Eckly A; Léon C; Petitjean C; Freund M; Cazenave JP; Gachet C; Lanza F
    Haematologica; 2009 Jun; 94(6):800-10. PubMed ID: 19377075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Podoplanin-positive periarteriolar stromal cells promote megakaryocyte growth and proplatelet formation in mice by CLEC-2.
    Tamura S; Suzuki-Inoue K; Tsukiji N; Shirai T; Sasaki T; Osada M; Satoh K; Ozaki Y
    Blood; 2016 Mar; 127(13):1701-10. PubMed ID: 26796360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying and enriching platelet-producing human stem cell-derived megakaryocytes using factor V uptake.
    Sim X; Jarocha D; Hayes V; Hanby HA; Marks MS; Camire RM; French DL; Poncz M; Gadue P
    Blood; 2017 Jul; 130(2):192-204. PubMed ID: 28455282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypercholesterolemia impairs megakaryopoiesis and platelet production in scavenger receptor BI knockout mice.
    Ouweneel AB; Hoekstra M; van der Wel EJ; Schaftenaar FH; Snip OSC; Hassan J; Korporaal SJA; Van Eck M
    Atherosclerosis; 2019 Mar; 282():176-182. PubMed ID: 30278990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilization of imaging flow cytometry to define intermediates of megakaryopoiesis in vivo and in vitro.
    McGrath KE
    J Immunol Methods; 2015 Aug; 423():45-51. PubMed ID: 25795419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Stimulation of bone marrow stromal cells conditioned medium on the expansion of mature megakaryocytes and colony forming unit-megakaryocyte in vitro].
    Huang YH; Wang QR
    Sheng Li Xue Bao; 2005 Apr; 57(2):247-53. PubMed ID: 15830112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of Mouse Megakaryocyte Progenitors.
    Kimmerlin Q; Tavian M; Gachet C; Lanza F; Brouard N
    J Vis Exp; 2021 May; (171):. PubMed ID: 34096917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytokine control of megakaryopoiesis.
    Behrens K; Alexander WS
    Growth Factors; 2018 Aug; 36(3-4):89-103. PubMed ID: 30318940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of megakaryopoiesis in long-term murine bone marrow cultures.
    Williams N; Jackson H; Sheridan AP; Murphy MJ; Elste A; Moore MA
    Blood; 1978 Feb; 51(2):245-55. PubMed ID: 620084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. VEGFR-3 is expressed on megakaryocyte precursors in the murine bone marrow and plays a regulatory role in megakaryopoiesis.
    Thiele W; Krishnan J; Rothley M; Weih D; Plaumann D; Kuch V; Quagliata L; Weich HA; Sleeman JP
    Blood; 2012 Aug; 120(9):1899-907. PubMed ID: 22797697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. OP9 bone marrow stroma cells differentiate into megakaryocytes and platelets.
    Matsubara Y; Ono Y; Suzuki H; Arai F; Suda T; Murata M; Ikeda Y
    PLoS One; 2013; 8(3):e58123. PubMed ID: 23469264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. c-Myc-mediated control of cell fate in megakaryocyte-erythrocyte progenitors.
    Guo Y; Niu C; Breslin P; Tang M; Zhang S; Wei W; Kini AR; Paner GP; Alkan S; Morris SW; Diaz M; Stiff PJ; Zhang J
    Blood; 2009 Sep; 114(10):2097-106. PubMed ID: 19372257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging Flow Cytometric Analysis of Primary Bone Marrow Megakaryocytes.
    Niswander LM; Palis J; McGrath KE
    Methods Mol Biol; 2016; 1389():265-77. PubMed ID: 27460252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Situ Exploration of Murine Megakaryopoiesis using Transmission Electron Microscopy.
    Scandola C; Lanza F; Gachet C; Eckly A
    J Vis Exp; 2021 Sep; (175):. PubMed ID: 34570102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Megakaryocyte development is normal in mice with targeted disruption of Tescalcin.
    Ukarapong S; Bao Y; Perera EM; Berkovitz GD
    Exp Cell Res; 2012 Mar; 318(5):662-9. PubMed ID: 22285131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in the regulation of megakaryocytopoiesis in the murine bone marrow and spleen.
    Long MW; Williams N
    Leuk Res; 1982; 6(5):721-8. PubMed ID: 7154708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CD45 expression discriminates waves of embryonic megakaryocytes in the mouse.
    Cortegano I; Serrano N; Ruiz C; Rodríguez M; Prado C; Alía M; Hidalgo A; Cano E; de Andrés B; Gaspar ML
    Haematologica; 2019 Sep; 104(9):1853-1865. PubMed ID: 30573502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-expression of the collagen receptors leukocyte-associated immunoglobulin-like receptor-1 and glycoprotein VI on a subset of megakaryoblasts.
    Steevels TA; Westerlaken GH; Tijssen MR; Coffer PJ; Lenting PJ; Akkerman JW; Meyaard L
    Haematologica; 2010 Dec; 95(12):2005-12. PubMed ID: 20713462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.