These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34866633)

  • 1. Controlled Semi-Automated Lased-Induced Injuries for Studying Spinal Cord Regeneration in Zebrafish Larvae.
    El-Daher F; Early JJ; Richmond CE; Jamieson R; Becker T; Becker CG
    J Vis Exp; 2021 Nov; (177):. PubMed ID: 34866633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular Dynamics during Spinal Cord Regeneration in Larval Zebrafish.
    Anguita-Salinas C; Sánchez M; Morales RA; Ceci ML; Rojas-Benítez D; Allende ML
    Dev Neurosci; 2019; 41(1-2):112-122. PubMed ID: 31390621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of Swim Endurance and Swim Behavior in Adult Zebrafish.
    Burris B; Jensen N; Mokalled MH
    J Vis Exp; 2021 Nov; (177):. PubMed ID: 34842242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In toto imaging of glial JNK signaling during larval zebrafish spinal cord regeneration.
    Becker CJ; Cigliola V; Gillotay P; Rich A; De Simone A; Han Y; Di Talia S; Poss KD
    Development; 2023 Dec; 150(24):. PubMed ID: 37997694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of functional recovery in a larval zebrafish model of spinal cord injury.
    Hossainian D; Shao E; Jiao B; Ilin VA; Parris RS; Zhou Y; Bai Q; Burton EA
    J Neurosci Res; 2022 Nov; 100(11):2044-2054. PubMed ID: 35986577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regenerative capacity in the lamprey spinal cord is not altered after a repeated transection.
    Hanslik KL; Allen SR; Harkenrider TL; Fogerson SM; Guadarrama E; Morgan JR
    PLoS One; 2019; 14(1):e0204193. PubMed ID: 30699109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical Ablation of Larval Zebrafish Spinal Cord.
    Crossman SH; Khabooshan MA; Stamatis SA; Vandestadt C; Kaslin J
    Methods Mol Biol; 2024; 2746():47-56. PubMed ID: 38070078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Erratum:Controlled Semi-Automated Laser-Induced Injuries for Studying Spinal Cord Regeneration in Zebrafish Larvae.
    J Vis Exp; 2022 Apr; (182):. PubMed ID: 35389979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A surgery protocol for adult zebrafish spinal cord injury.
    Fang P; Lin JF; Pan HC; Shen YQ; Schachner M
    J Genet Genomics; 2012 Sep; 39(9):481-7. PubMed ID: 23021548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR gRNA phenotypic screening in zebrafish reveals pro-regenerative genes in spinal cord injury.
    Keatinge M; Tsarouchas TM; Munir T; Porter NJ; Larraz J; Gianni D; Tsai HH; Becker CG; Lyons DA; Becker T
    PLoS Genet; 2021 Apr; 17(4):e1009515. PubMed ID: 33914736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Know How to Regrow-Axon Regeneration in the Zebrafish Spinal Cord.
    Tsata V; Wehner D
    Cells; 2021 Jun; 10(6):. PubMed ID: 34204045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Syntenin-a promotes spinal cord regeneration following injury in adult zebrafish.
    Yu Y; Schachner M
    Eur J Neurosci; 2013 Jul; 38(2):2280-9. PubMed ID: 23607754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wnt/ß-catenin signaling is required for radial glial neurogenesis following spinal cord injury.
    Briona LK; Poulain FE; Mosimann C; Dorsky RI
    Dev Biol; 2015 Jul; 403(1):15-21. PubMed ID: 25888075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MicroRNA miR-133b is essential for functional recovery after spinal cord injury in adult zebrafish.
    Yu YM; Gibbs KM; Davila J; Campbell N; Sung S; Todorova TI; Otsuka S; Sabaawy HE; Hart RP; Schachner M
    Eur J Neurosci; 2011 May; 33(9):1587-97. PubMed ID: 21447094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Meningeal cells and glia establish a permissive environment for axon regeneration after spinal cord injury in newts.
    Zukor KA; Kent DT; Odelberg SJ
    Neural Dev; 2011 Jan; 6():1. PubMed ID: 21205291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AxonTracer: a novel ImageJ plugin for automated quantification of axon regeneration in spinal cord tissue.
    Patel A; Li Z; Canete P; Strobl H; Dulin J; Kadoya K; Gibbs D; Poplawski GHD
    BMC Neurosci; 2018 Mar; 19(1):8. PubMed ID: 29523078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. L1.2, the zebrafish paralog of L1.1 and ortholog of the mammalian cell adhesion molecule L1 contributes to spinal cord regeneration in adult zebrafish.
    Chen T; Yu Y; Hu C; Schachner M
    Restor Neurol Neurosci; 2016; 34(2):325-35. PubMed ID: 26889968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regeneration of Xenopus laevis spinal cord requires Sox2/3 expressing cells.
    Muñoz R; Edwards-Faret G; Moreno M; Zuñiga N; Cline H; Larraín J
    Dev Biol; 2015 Dec; 408(2):229-43. PubMed ID: 25797152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The expression of chemorepulsive guidance receptors and the regenerative abilities of spinal-projecting neurons after spinal cord injury.
    Chen J; Laramore C; Shifman MI
    Neuroscience; 2017 Jan; 341():95-111. PubMed ID: 27890825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wnt/β-catenin signaling promotes regeneration after adult zebrafish spinal cord injury.
    Strand NS; Hoi KK; Phan TMT; Ray CA; Berndt JD; Moon RT
    Biochem Biophys Res Commun; 2016 Sep; 477(4):952-956. PubMed ID: 27387232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.