These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 34867145)

  • 1. MCSNet: Channel Synergy-Based Human-Exoskeleton Interface With Surface Electromyogram.
    Shi K; Huang R; Peng Z; Mu F; Yang X
    Front Neurosci; 2021; 15():704603. PubMed ID: 34867145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Channel Synergy-based Human-Robot Interface for a Lower Limb Walking Assistance Exoskeleton.
    Shi K; Huang R; Mu F; Peng Z; Yin J; Cheng H
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1076-1081. PubMed ID: 34891474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multimodal Human-Exoskeleton Interface for Lower Limb Movement Prediction Through a Dense Co-Attention Symmetric Mechanism.
    Shi K; Mu F; Huang R; Huang K; Peng Z; Zou C; Yang X; Cheng H
    Front Neurosci; 2022; 16():796290. PubMed ID: 35546887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An sEMG-Based Human-Exoskeleton Interface Fusing Convolutional Neural Networks With Hand-Crafted Features.
    Yang X; Fu Z; Li B; Liu J
    Front Neurorobot; 2022; 16():938345. PubMed ID: 35845758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of knee joint movement using single-channel sEMG signals with a feature-guided convolutional neural network.
    Zhang S; Lu J; Huo W; Yu N; Han J
    Front Neurorobot; 2022; 16():978014. PubMed ID: 36386394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A real-time stable-control gait switching strategy for lower-limb rehabilitation exoskeleton.
    Guo Z; Wang C; Song C
    PLoS One; 2020; 15(8):e0238247. PubMed ID: 32853239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Upper-Limb Muscle Synergy Features in Human-Robot Interaction with Circle-Drawing Movements.
    Wang C; Zhang S; Hu J; Huang Z; Shi C
    Appl Bionics Biomech; 2021; 2021():8850785. PubMed ID: 34567239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. sEMG-Based Motion Recognition of Upper Limb Rehabilitation Using the Improved Yolo-v4 Algorithm.
    Bu D; Guo S; Li H
    Life (Basel); 2022 Jan; 12(1):. PubMed ID: 35054457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lower Limb Motion Recognition with Improved SVM Based on Surface Electromyography.
    Tu P; Li J; Wang H
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electroencephalogram and surface electromyogram fusion-based precise detection of lower limb voluntary movement using convolution neural network-long short-term memory model.
    Zhang X; Li H; Dong R; Lu Z; Li C
    Front Neurosci; 2022; 16():954387. PubMed ID: 36213740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a machine-learning-driven active-passive upper-limb exoskeleton robot: Experimental human-in-the-loop study.
    Nasr A; Hunter J; Dickerson CR; McPhee J
    Wearable Technol; 2023; 4():e13. PubMed ID: 38487766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of velocity and acceleration in joint angle estimation for an EMG-Based upper-limb exoskeleton control.
    Tang Z; Yu H; Yang H; Zhang L; Zhang L
    Comput Biol Med; 2022 Feb; 141():105156. PubMed ID: 34942392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of movement onset using EMG signals for upper-limb exoskeletons in reaching tasks.
    Trigili E; Grazi L; Crea S; Accogli A; Carpaneto J; Micera S; Vitiello N; Panarese A
    J Neuroeng Rehabil; 2019 Mar; 16(1):45. PubMed ID: 30922326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional Evaluation of a Force Sensor-Controlled Upper-Limb Power-Assisted Exoskeleton with High Backdrivability.
    Liu C; Liang H; Ueda N; Li P; Fujimoto Y; Zhu C
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33182271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-Time Evaluation of the Signal Processing of sEMG Used in Limb Exoskeleton Rehabilitation System.
    Gao B; Wei C; Ma H; Yang S; Ma X; Zhang S
    Appl Bionics Biomech; 2018; 2018():1391032. PubMed ID: 30405746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proportional myoelectric and compensating control of a cable-conduit mechanism-driven upper limb exoskeleton.
    Xiao F
    ISA Trans; 2019 Jun; 89():245-255. PubMed ID: 30711342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Method for Hand Movement Recognition Based on Wavelet Packet Transform and Principal Component Analysis with Surface Electromyogram.
    Huo Y; Li F; Li Q; He E; Chen J
    Comput Intell Neurosci; 2022; 2022():8125186. PubMed ID: 36397787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A SEMG-angle model based on HMM for human robot interaction.
    Chen Y; Liang L; Wu M; Dong Q
    Technol Health Care; 2019; 27(S1):383-395. PubMed ID: 31045555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of Torque-Control Model for Quasi-Direct-Drive Knee Exoskeleton Robots Based on Regression Forecasting.
    Xia Y; Wei W; Lin X; Li J
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38475041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upper Limb Movement Classification Via Electromyographic Signals and an Enhanced Probabilistic Network.
    Burns A; Adeli H; Buford JA
    J Med Syst; 2020 Aug; 44(10):176. PubMed ID: 32829419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.