BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 34867178)

  • 1. The Role of Mitochondria in Optic Atrophy With Autosomal Inheritance.
    Strachan EL; Mac White-Begg D; Crean J; Reynolds AL; Kennedy BN; O'Sullivan NC
    Front Neurosci; 2021; 15():784987. PubMed ID: 34867178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Oxidative Stress in Ocular Diseases Associated with Retinal Ganglion Cells Degeneration.
    Kang EY; Liu PK; Wen YT; Quinn PMJ; Levi SR; Wang NK; Tsai RK
    Antioxidants (Basel); 2021 Dec; 10(12):. PubMed ID: 34943051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dominant optic atrophy.
    Lenaers G; Hamel C; Delettre C; Amati-Bonneau P; Procaccio V; Bonneau D; Reynier P; Milea D
    Orphanet J Rare Dis; 2012 Jul; 7():46. PubMed ID: 22776096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emerging Mitochondrial Therapeutic Targets in Optic Neuropathies.
    Lopez Sanchez MI; Crowston JG; Mackey DA; Trounce IA
    Pharmacol Ther; 2016 Sep; 165():132-52. PubMed ID: 27288727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Progressive optic atrophy in a retinal ganglion cell-specific mouse model of complex I deficiency.
    Wang L; Klingeborn M; Travis AM; Hao Y; Arshavsky VY; Gospe SM
    Sci Rep; 2020 Oct; 10(1):16326. PubMed ID: 33004958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Influence of Mitochondrial Dynamics and Function on Retinal Ganglion Cell Susceptibility in Optic Nerve Disease.
    Muench NA; Patel S; Maes ME; Donahue RJ; Ikeda A; Nickells RW
    Cells; 2021 Jun; 10(7):. PubMed ID: 34201955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A splice site mutation in the murine Opa1 gene features pathology of autosomal dominant optic atrophy.
    Alavi MV; Bette S; Schimpf S; Schuettauf F; Schraermeyer U; Wehrl HF; Ruttiger L; Beck SC; Tonagel F; Pichler BJ; Knipper M; Peters T; Laufs J; Wissinger B
    Brain; 2007 Apr; 130(Pt 4):1029-42. PubMed ID: 17314202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bipolar cell reduction precedes retinal ganglion neuron loss in a complex 1 knockout mouse model.
    Song L; Yu A; Murray K; Cortopassi G
    Brain Res; 2017 Feb; 1657():232-244. PubMed ID: 28027875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. OPA1 gene therapy prevents retinal ganglion cell loss in a Dominant Optic Atrophy mouse model.
    Sarzi E; Seveno M; Piro-Mégy C; Elzière L; Quilès M; Péquignot M; Müller A; Hamel CP; Lenaers G; Delettre C
    Sci Rep; 2018 Feb; 8(1):2468. PubMed ID: 29410463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of retinal ganglion cell damage in glaucomatous optic neuropathy: Axon transport, injury and soma loss.
    Nuschke AC; Farrell SR; Levesque JM; Chauhan BC
    Exp Eye Res; 2015 Dec; 141():111-24. PubMed ID: 26070986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retinal ganglion cell death and optic nerve degeneration by genetic ablation in adult mice.
    Cho JH; Mu X; Wang SW; Klein WH
    Exp Eye Res; 2009 Mar; 88(3):542-52. PubMed ID: 19109949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Idebenone protects against retinal damage and loss of vision in a mouse model of Leber's hereditary optic neuropathy.
    Heitz FD; Erb M; Anklin C; Robay D; Pernet V; Gueven N
    PLoS One; 2012; 7(9):e45182. PubMed ID: 23028832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optic neuropathies: the tip of the neurodegeneration iceberg.
    Carelli V; La Morgia C; Ross-Cisneros FN; Sadun AA
    Hum Mol Genet; 2017 Oct; 26(R2):R139-R150. PubMed ID: 28977448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rescue of cell death and inflammation of a mouse model of complex 1-mediated vision loss by repurposed drug molecules.
    Yu AK; Datta S; McMackin MZ; Cortopassi GA
    Hum Mol Genet; 2017 Dec; 26(24):4929-4936. PubMed ID: 29040550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adult mice transplanted with embryonic retinal progenitor cells: new approach for repairing damaged optic nerves.
    Cho JH; Mao CA; Klein WH
    Mol Vis; 2012; 18():2658-72. PubMed ID: 23170059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of retinal ganglion specific-cell death in Leber hereditary optic neuropathy.
    Levin LA
    Trans Am Ophthalmol Soc; 2007; 105():379-91. PubMed ID: 18427623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling autosomal dominant optic atrophy using induced pluripotent stem cells and identifying potential therapeutic targets.
    Chen J; Riazifar H; Guan MX; Huang T
    Stem Cell Res Ther; 2016 Jan; 7():2. PubMed ID: 26738566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased steroidogenesis promotes early-onset and severe vision loss in females with OPA1 dominant optic atrophy.
    Sarzi E; Seveno M; Angebault C; Milea D; Rönnbäck C; Quilès M; Adrian M; Grenier J; Caignard A; Lacroux A; Lavergne C; Reynier P; Larsen M; Hamel CP; Delettre C; Lenaers G; Müller A
    Hum Mol Genet; 2016 Jun; 25(12):2539-2551. PubMed ID: 27260406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methane rescues retinal ganglion cells and limits retinal mitochondrial dysfunction following optic nerve crush.
    Wang R; Sun Q; Xia F; Chen Z; Wu J; Zhang Y; Xu J; Liu L
    Exp Eye Res; 2017 Jun; 159():49-57. PubMed ID: 28336261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leber hereditary optic neuropathy: respiratory chain dysfunction and degeneration of the optic nerve.
    Howell N
    Vision Res; 1998 May; 38(10):1495-504. PubMed ID: 9667014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.