These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 34867729)

  • 41. Noninvasive autoregulation monitoring with and without intracranial pressure in the naive piglet brain.
    Brady KM; Mytar JO; Kibler KK; Hogue CW; Lee JK; Czosnyka M; Smielewski P; Easley RB
    Anesth Analg; 2010 Jul; 111(1):191-5. PubMed ID: 20519421
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Continuous cerebral autoregulation monitoring by cross-correlation analysis.
    Steinmeier R; Hofmann RP; Bauhuf C; Hübner U; Fahlbusch R
    J Neurotrauma; 2002 Oct; 19(10):1127-38. PubMed ID: 12427323
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The limitations of near-infrared spectroscopy to assess cerebrovascular reactivity: the role of slow frequency oscillations.
    Diedler J; Zweifel C; Budohoski KP; Kasprowicz M; Sorrentino E; Haubrich C; Brady KM; Czosnyka M; Pickard JD; Smielewski P
    Anesth Analg; 2011 Oct; 113(4):849-57. PubMed ID: 21821514
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dynamic Cerebral Autoregulation During the Combination of Mild Hypercapnia and Cephalad Fluid Shift.
    Kurazumi T; Ogawa Y; Yanagida R; Morisaki H; Iwasaki KI
    Aerosp Med Hum Perform; 2017 Sep; 88(9):819-826. PubMed ID: 28818140
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Wavelet phase synchronization analysis of cerebral blood flow autoregulation.
    Peng T; Rowley AB; Ainslie PN; Poulin MJ; Payne SJ
    IEEE Trans Biomed Eng; 2010 Apr; 57(4):960-8. PubMed ID: 20142164
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sensitivity of frequency-domain optical measurements to brain hemodynamics: simulations and human study of cerebral blood flow during hypercapnia.
    Pham T; Blaney G; Sassaroli A; Fernandez C; Fantini S
    Biomed Opt Express; 2021 Feb; 12(2):766-789. PubMed ID: 33680541
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A continuous correlation between intracranial pressure and cerebral blood flow velocity reflects cerebral autoregulation impairment during intracranial pressure plateau waves.
    Lewis PM; Smielewski P; Rosenfeld JV; Pickard JD; Czosnyka M
    Neurocrit Care; 2014 Dec; 21(3):514-25. PubMed ID: 24865272
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dual-slope imaging of cerebral hemodynamics with frequency-domain near-infrared spectroscopy.
    Blaney G; Fernandez C; Sassaroli A; Fantini S
    Neurophotonics; 2023 Jan; 10(1):013508. PubMed ID: 36601543
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phase dynamics in cerebral autoregulation.
    Latka M; Turalska M; Glaubic-Latka M; Kolodziej W; Latka D; West BJ
    Am J Physiol Heart Circ Physiol; 2005 Nov; 289(5):H2272-9. PubMed ID: 16024579
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparison of wavelet and correlation indices of cerebral autoregulation in a pediatric swine model of cardiac arrest.
    Liu X; Hu X; Brady KM; Koehler R; Smielewski P; Czosnyka M; Donnelly J; Lee JK
    Sci Rep; 2020 Apr; 10(1):5926. PubMed ID: 32245979
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Low frequency oscillations in cephalic vessels assessed by near infrared spectroscopy.
    Phillip D; Schytz HW; Selb J; Payne S; Iversen HK; Skovgaard LT; Boas DA; Ashina M
    Eur J Clin Invest; 2012 Nov; 42(11):1180-8. PubMed ID: 22897146
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dynamic cerebral autoregulation assessment using an ARX model: comparative study using step response and phase shift analysis.
    Liu Y; Birch AA; Allen R
    Med Eng Phys; 2003 Oct; 25(8):647-53. PubMed ID: 12900180
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of arterial blood gas levels on cerebral blood flow and oxygen transport.
    Payne SJ; Mohammad J; Tisdall MM; Tachtsidis I
    Biomed Opt Express; 2011 Mar; 2(4):966-79. PubMed ID: 21483617
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cerebral autoregulation index at high altitude assessed by thigh-cuff and transfer function analysis techniques.
    Subudhi AW; Grajzel K; Langolf RJ; Roach RC; Panerai RB; Davis JE
    Exp Physiol; 2015 Feb; 100(2):173-81. PubMed ID: 25480158
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Measuring Near-Infrared Spectroscopy Derived Cerebral Autoregulation in Neonates: From Research Tool Toward Bedside Multimodal Monitoring.
    Thewissen L; Caicedo A; Lemmers P; Van Bel F; Van Huffel S; Naulaers G
    Front Pediatr; 2018; 6():117. PubMed ID: 29868521
    [No Abstract]   [Full Text] [Related]  

  • 56. Cerebral autoregulation: from models to clinical applications.
    Panerai RB
    Cardiovasc Eng; 2008 Mar; 8(1):42-59. PubMed ID: 18041584
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Regional heterogeneity of cerebral hemodynamics in mild neonatal encephalopathy measured with multichannel near-infrared spectroscopy.
    Tian F; Sepulveda P; Kota S; Liu Y; Das Y; Liu H; Zhang R; Chalak L
    Pediatr Res; 2021 Mar; 89(4):882-888. PubMed ID: 32492696
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The sit-to-stand technique for the measurement of dynamic cerebral autoregulation.
    Sorond FA; Serrador JM; Jones RN; Shaffer ML; Lipsitz LA
    Ultrasound Med Biol; 2009 Jan; 35(1):21-9. PubMed ID: 18834658
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Assessment of Optimal Arterial Pressure with Near-Infrared Spectroscopy in Traumatic Brain Injury Patients.
    Oshorov A; Savin I; Alexandrova E; Bragin D
    Adv Exp Med Biol; 2022; 1395():133-137. PubMed ID: 36527627
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The upper frequency limit of dynamic cerebral autoregulation.
    Panerai RB; Robinson TG; Minhas JS
    J Physiol; 2019 Dec; 597(24):5821-5833. PubMed ID: 31671473
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.